
Bottom-up k-Vertex Connected Component
Enumeration by Multiple Expansion

Haoyu Liu, Yongcai Wang∗ , Xiaojia Xu, Deying Li
School of Information, Renmin University of China, Beijing, China

{hyliu2187, ycw, xuxiaojia, deyingli}@ruc.edu.cn

Abstract—Bottom-up k-vertex connected component (k-VCC)
enumeration methods, referred to as VCCE-BU, have exhib-
ited better efficiency compared to the exact top-down k-VCC
enumeration method (VCCE-TD). However, VCCE-BU has been
found to have surprisingly low detection accuracy, that it may
detect fewer k-VCC vertices than VCCE-TD. This raises the
question of what causes VCCE-BU to have a low k-VCC
enumeration quality. This paper investigates the reason and
proposes that the local expansion should be reformulated as a
Multiple vertex collaborative Expansion problem instead of the
traditional Unitary Expansion (UE). A Multiple Expansion (ME)
approach, which allows to expand multiple neighboring vertices
jointly and collaboratively is proposed, which is proven exact
in local expansion. However, the exact ME-based local expansion
needs to explore large neighborhoods in each step, which is time-
consuming. To address the efficiency issue, a Ring-based Multiple
Expansion (RME) is proposed to conduct ME within one-hop
neighbors. A maximum flow-based merging algorithm FBM is
proposed for effective merging. A maximal clique and breath-
first-search-based quick seeding algorithm QkVCS is proposed
to generate k-VCC seeds efficiently. As a result, RIPPLE which
integrates QkVCS+FBM+RME is presented as a new accurate
and efficient bottom-up approach. Extensive verifications in real
large-scale graph datasets demonstrate that even the single-
thread RIPPLE is much more accurate and a magnitude faster
than the state-of-the-art VCCE-BU method. We also demonstrate
the effective speeding up to run RIPPLE in parallel.

Index Terms—k-Vertex Connected Component Enumeration,
Bottom-up Approach, Multiple Vertex Expansion

I. INTRODUCTION

The discovery of communities is crucial to understand the

patterns, relationships, and organizational structures of com-

plex networks. It has broad applications in numerous fields,

including social network analysis [5], bioinformatics [31],

recommender systems [13], etc. Various community detection

algorithms have been presented. Clique [21] and variations of

clique, including quasi-clique [29], k-plex [1] detect complete
or nearly complete subgraphs; k-core [7] divides the graph
into multiple layers according to the node degree, while k-
truss [17] detects the subgraphs where each edge is supported

by enough triangles. These methods define cohesive features

mainly based on local features of edges or vertices. Whereas

in multi-hop graphs, high connectivity among vertices is

This work was partially supported by the National Natural Science Foun-
dation of China Grant No. 61972404, No. 12071478, and Public Computing
Cloud, Renmin University of China.
*Yongcai Wang is the corresponding author.

𝑣

𝑣2 𝑣3

𝑣4 𝑣5

𝑣6

𝑣7 𝑣8

𝑣9

𝑣10

𝑣11

𝑣12

𝑣13

𝑣14

𝑣15 𝑣16

Fig. 1: k-VCCs in graph G.

undoubtedly an important feature for evaluating a community

[2][19]. In view of this, various connectivity-based cohesive

subgraphs have been formulated, such as s-bundle [30], γ-
relative vertex connected subgraph [34], γ-relative edge con-
nected subgraph [21], k-vertex connected component (k-VCC)
[25][36], k-edge connected component (k-ECC) [40][6].

Among them, the k-vertex connected component, i.e., k-
VCC, is a subgraph that remains connected when any k − 1
vertices are removed from the subgraph. It indicates there

are at least k vertex disjoint paths between each pair of

vertices in the component. The k-vertex-disjoint path is also
generally required in networks [24][18] and traffic control [3]

for transportation robustness against node failure. In graph

theory, a k-VCC implies maximality, that each k-VCC is not
a proper subgraph of any other larger k-VCC. k-VCC offers
insight into a network’s structural integrity and fault tolerance

based on vertex connectivity. For its importance, it is valuable

to ask to list all the k-VCCs, i.e., the k-VCC enumeration

problem in large graphs. Figure 1 shows an example of k-
VCC enumeration in graph G consisting of 16 vertices and

36 edges. The distribution of k-VCCs is illustrated for all
possible k. When k = 1, the entire graph G represents

a 1-VCC since it is a connected component. For k = 2,
G1 = {vi | 1 ≤ i ≤ 15} is a 2-VCC because v16 has only one
vertex-disjoint path to other vertices, so v16 is excluded. When
k = 3, there are two 3-VCCs, G2 = {v10, v11, v12, v13, v14}
and G3 = {v1, v2, v3, v4, v5, v6, v7, v8, v9}. For k = 4, only
one 4-VCC exists, namely G2.

Existing methods [39][26][36][25] for k-VCC enumeration
can be roughly divided into two categories. The first is “top-

down”, termed VCCE-TD, which iteratively finds vertex cuts

of size less than k in the graph by computing the maximum

3000

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00233



flow and removes them until each connected subgraph is

k-vertex connected. VCCE-TD is proven to be exact [36].

However, it needs to cache large subnetworks, and the iter-

ative maximum flow is computationally expensive. Another

drawback is that it is hard to be parallelized. The second is

the “bottom-up” method, termed VCCE-BU, which follows

a seeding, expansion, and merging pipeline [25]. VCCE-BU
shows better efficiency than VCCE-TD. Besides, Li et al. [26]

adopt a combination of top-down and bottom-up approaches.

VCCE-BU firstly finds some seeding k-vertex connected
subgraphs (k-VCSs) and then expands the k-VCSs from the

seeds through local expansion. When two k-VCSs meet,
conditions are designed to merge the two k-VCSs [25]. VCCE-
BU shows one order of magnitude faster than VCCE-TD and

is easily paralleled [25]. However, current VCCE-BU shows

surprisingly low detection accuracy than VCCE-TD, i.e., the

Cross Common Fraction (1), which evaluates the common

fraction between the detected k-VCC vertices and the ground-
truth k-VCC vertices is much lower than 100% in most cases.

This problem is strange and raises the problem of how far the

VCCE-BU is from the exact VCCE-TD in the enumeration

quality. Meanwhile, the enumeration-based seeding in current

VCCE-BU is inefficient in large graphs.

This paper revisits VCCE-BU and shows that the main

reason for the inaccuracy is the heuristics used in the local

expansion and merging. In current VCCE-BU, a Unitary

Expansion (UE) heuristic, which expands one neighboring

vertex at each time, is used, and a neighbor-counting-based

merging method is used for merging k-VCSs. However, we
show that the UE is only a special case of valid expansion

options. Instead, we propose a Multiple vertex collaborative
Expansion (ME) problem that allows multiple vertices to be

expanded jointly and collaboratively since multiple expanded

vertices can provide vertex disjoint paths for each other, while

UE fails to expand in such cases. Therefore, a ME-based

local expansion algorithm is proposed and we prove the ME-

based local expansion is exact. We also show existing merging

condition is problematic in some cases, thus we propose a new

Flow-Based Merging (FBM) condition.

However, the exact multiple expansion and merging method

needs high computation costs for the requirement to explore

large neighborhoods to keep the “exact” property. To speed

up, a Ring-based Multiple Expansion (RME) is proposed to

restrict the expansion step size within one-hop neighbors to

conduct ME efficiently. A maximum clique and breath-first-

search-based seeding algorithm, i.e., QkVCS is also proposed

to generate k-VCC seeds efficiently. At last, RIPPLE, which
integrates QkVCS+RME+FBM is presented as a new practical

bottom-up approach. Extensive verifications in real large-scale

graph datasets demonstrate that even the single thread RIPPLE

is much more accurate and one magnitude time faster than the

state-of-the-art VCCE-BU. RIPPLE is easy to run in parallel

and is much speeded up in parallel running. ME actually

provides a flexible control to the local search step size based

on the user’s preference for efficiency or accuracy.

The main contributions are summarized as follows.

• The inaccuracy problem of VCCE-BU is shown due to

UE and neighbor-counting-based merging. We reformu-

late the local expansion problem as a multiple vertex

collaborative expansion problem and multiple expansion

algorithm (ME), which is proven exact. We further pro-

pose a ring-based multiple expansion (RME), which is

much more time-efficient.

• We propose a Flow-Based-Merging (FBM) method for
k-VCS merging and QkVCS, a maximal clique and BFS-
based seeding algorithm to speed up the seed generation.

• We propose RIPPLE, which conducts RME and FBM

from the distributed k-VCC seeds generated by QkVCS.
RIPPLE is not only accurate but also efficient.

II. RELATED WORK

A. Vertex Connectivity

As for the vertex connectivity, denoted as κ, the smallest
cardinality of a vertex separator of a given graph G; To
compute κ, Henzinger et al. [15] proposed an O(min{κ3 +
n, κn}m) time algorithm to calculate the connectivity of

a digraph. Gabow [12] improved the best time bound of

computing κ to O((n+min{κ 5
2 , κn

3
4 })κn). There are some

randomized algorithms to compute κ. Nanongkai et al. [28]
presented a randomized Monte Carlo algorithm with time

O(m+ k
7
3n

4
3 ). Forster et al. [11] improved the efficiency of

the algorithm to O(m+ k3n) time.

B. k-VCC Enumerating

Existing algorithms for k-VCC enumerating can be classi-
fied into two categories: exact algorithms (Top-down Frame-

work) and heuristic algorithms (Bottom-up Framework). For

the exact algorithms, Even and Tarjan [10] developed the first

exact k-VCC enumerating algorithms based on network flow
which is very efficient on sparse graphs with O(|V |2.5·E) time
complexity. Such an algorithm was improved by Cheriyan et

al. [8] based on the sparse certificates technique. Subsequently,

Wen et al. [36] studied the polynomial running time algorithm

for the k-VCC enumeration. They proposed two optimization
strategies to improve the algorithmic efficiency significantly.

For the heuristic algorithm, Li et al. [26] proposed an approach

in a bottom-up manner, which is more efficient in time and

space. This algorithm can be further combined with the top-

down manner approach to get exact results [25]. For k =

2, Tarjan [33] gave a linear time algorithm, and for k = 3,
Hopcroft et al. [16] also proposed a linear time algorithm.

For any constant k, Henzinger et al. [14] presented an O(n3)
time algorithm for computing k-vertex strongly connected
components in directed graphs.

C. Seed Expansion

The seed expansion method is widely used in different

domains to identify overlapping communities. In the seed

expansion method, a seed is a small set of vertices chosen

in specific ways. Expansion is accomplished by traversing the

vertices around the seed iteratively and adding them optionally.

Lancichinetti et al. [22] first studied an algorithm that is based

3001



on the local expansion of a community. A method called Rank

Removal (RaRe) is proposed by Baumes et al. [4] for seed

selection. Lee et al. [23] proposed Greedy Clique Expansion

(GCE) algorithm. This algorithm takes different cliques as

seeds and expands these seeds by greedy optimization of local

fitness functions. An efficient overlapping community detec-

tion algorithm using a seed set expansion approach is proposed

by Whang et al. [37]. They then studied a neighborhood-

inflated seed expansion algorithm [38]. The neighborhood

inflation step, where seeds are modified to represent their

whole vertex neighborhood, is an essential step in this method.

Kloumann et al. [20] developed a principled framework for

evaluating ranking methods by studying seed set expansion

applied to the stochastic block model. Sein [32] proposed an

overlapping seed expansion algorithm to find the best seeds.

III. PRELIMINARIES AND BACKGROUND

In this section, we present notations and definitions related

to the k-vertex connected component enumeration.

A. Problem Definition

We consider an undirected and unweighted graph G(V,E),
where V is the set of vertices and E is the set of edges.

We consider only simple graphs, i.e., without self-loops and

parallel edges. The number of vertices and the number of edges

are denoted by n = |V | and m = |E|. We denote the set of
h-hop neighbors of vertex u in G by Nh

G(u) = {u ∈ V |
dist(u, v) ≤ h}, and the set of h-hop neighbors of vertex
set S in G by Nh

G(S) =
⋃

u∈S Nh
G(u). For simplicity, we

omit superscripts when h = 1. We denote the degree of u by
dG(u) = |NG(u)| since G is a simple graph. We use B(S)
to denote the boundary [25] of the induced subgraph G[S]:
∀v ∈ S, if ∃u ∈ N(v) and u /∈ S, then v ∈ B(S); and S̄
denotes the set of vertices in G\S. LetMax Flows→t

G be the

maximum flow from s to t in G.MC is the set of the maximal
cliques. u ≡k

G v means there are at least k vertex-disjoint

paths between u and v in G. u ≡k
G S means ∀v ∈ S, u ≡k

G v.
Frequently used notations are summarized in Table I.

TABLE I: Notations

Notation Meaning

G = (V,E) an unweighted and undirected graph with vertex
set V and edge set E

Nh
G(u), Nh

G(S) the set of h-hop neighbors of u or S in G, we
omit superscript when h = 1

G[S] the subgraph of G induced by the vertices in S
dG(u) the cardinality of NG(u)
B(S) the set of vertices in boundary of S
S̄ the set of vertices in G \ S
Max F lows→t

G maximum flow from s to t in G
MC the set of maximal cliques

u ≡k
G v u has at least k vertex disjoint paths to u in G,

or S is no less than k in G
u ≡k

G S ∀v ∈ S, u has at least k-vertex disjoint paths
to v

A graph is k-vertex connected if it remains connected after
the removal of any k − 1 vertices from it. The k-vertex
connected subgraph is defined as follows.

Definition 1 (k-Vertex Connected Subgraph). Given a graph
G, a subgraph g is a k-vertex connected subgraph (k-VCS)
of G if ∀u, v ∈ g, there are at least k vertex-disjoint paths
between u and v in g.

Considering the potential inclusion relationships among the

k-VCSs, we define the k-vertex connected component.

Definition 2 (k-Vertex Connected Component). Given a graph
G, a subgraph g is a k-vertex connected component (k-VCC)
of G if (i) g is a k-vertex connected subgraph and (ii) g is
maximal (i.e., � another k-VCS g′ ⊆ G, such that g � g′).

Definition 3 (k-VCC Enumeration Problem). Given a graph
G and an integer k, the problem of k-VCC enumeration (k-
VCCE) aims to find all k-VCCs of G. If the value of k is clear
from the context, we use “VCCE” to mean k-VCCE.

B. State-Of-The-Arts

The state-of-the-art of k-VCCE approaches can be roughly
divided into top-down and bottom-up two approaches.

1) Top-Down Approach: VCCE-TD. The top-down ap-
proach recursively partitions the graph into smaller subgraphs

until the remained graph is a single-vertex graph or a k-
VCC. The partitioning process is achieved by removing

the minimum cuts in the graph when the cardinality of

the minimum cut is less than k [36]. VCCE-TD runs in

O
(
min

(
n0.5, k

) ·m · (n+ δ2
) · n) time to exactly compute

all k-VCCs, where δ is the minimum degree in the input graph.
Limitations of VCCE-TD. Although the top-down ap-

proach is exact, it has several limitations: (1) since VCCE-TD

adopts the recursive graph partition scheme, it requires storing

the partitioned subgraphs in memory, which is extremely

space-inefficient for large graphs. (2) it relies on building a

flow network for each subgraph to compute the minimum cut,

which compromises efficiency even though some optimiza-

tions are implemented. (3) it is difficult to run in parallel.

2) Bottom-Up Approach: VCCE-BU. Seeing the limi-
tations of the top-down approach, the bottom-up approach

enumerates k-VCCs using a seeding, local expansion, and
merging pipeline [25]. It first finds a set of k-VCSs as seeds
and then expands these k-VCSs via local expansion to pursue
the k-VCCs rooted in these seeds. When two k-VCSs meet,
merging conditions are checked to merge the k-VCSs to pursue
larger k-VCCs. Benefiting from the local expansion scheme,

the bottom-up approach is efficient in storage and computation.

Additionally, it can be implemented in parallel. However,

VCCE-BU has a noticeable limitation in that the k-VCC
enumeration accuracy is unsatisfactory compared to the exact

VCCE-BU. In Table III, we evaluate the accuracy of VCCE-

BU by Fsame and JIndex. It can be seen that the accuracy
results are unsatisfactory in most cases. The efficiency of

enumeration-based seeding is also not satisfied in large graphs.

C. A Revisit to VCCE-BU

1) Why VCCE-BU has unsatisfactory accuracy?: We first
investigate why the VCCE-BU has unsatisfactory accuracy.

Reason 1: The Limitation of Unitary Expansion

3002



Firstly, expanding is the primary method for extending a k-
VCS, but in the current VCCE-BU method, the local expansion

considers expanding a single vertex at each time. We call it

Unitary Expansion (UE). We will show that UE is one of the

main reasons for losing accuracy.

For each seeding subgraph S, UE takes the vertices in

B(S̄) = {u | u ∈ V (G) \S, dG[S∪u](u) ≥ 1} as the candidate
set. Then it calculates dG[S∪u](u) for each vertex u in the

candidate set B(S̄). u is added into S if dG[S∪u](u) ≥ k. UE
iteratively executes this unitary vertex expansion procedure

until there is no vertex in B(S̄) that satisfies the above
expansion condition.

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑣6

𝑣7 𝑣8

𝑣9 √

(a) Failure of Unitary Expansion

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑣6

𝑣7 𝑣8

𝑣9 √√

(b) Successful Multiple Expansion

Fig. 2: Unitary Expansion vs. Multiple Expansion

An example in Fig. 2 shows the limitation of UE, where

we set k = 3. Suppose S = {v1, v2, v3, v4, v5} is a 3-

VCS found in the seeding phase. Using UE, B(S̄) ={v6,
v7, v9} are considered as the candidate set, but none of the
vertices in B(S̄) can be added into S because each vertex has
fewer than three neighbors in S. However, if the connectivity
between v6 and v7 is considered, we find that v6 and v7
are adjacent; v6 provides a new vertex-disjoint path for v7
(i.e., v7 → v6 → v1), and vice versa. Thus, {v6, v7} should
actually be expanded by the seed subgraph at the same time.

Furthermore, {v8, v9} can also be added in a similar manner
after S is updated, so UE misses the opportunity to expand

four vertices, as shown in Figure 2(b).

Reason 2: The Limitation of Neighbor-based Merging
In the VCCE-BU, in addition to local expansion, when

some k-VCSs meet during expansion, VCCE-BU attempts to
combine the k-VCSs to obtain a larger k-VCS, which is called
merging. Assume that S and S′ are sets of vertices in a graph
G, i.e., S ⊆ V, S′ ⊆ V , and the induced subgraph G[S] and
G [S′] are two detected k-VCSs, VCCE-BU gives a neighbor-
based merging condition for merging G[S] and G [S′].

Proposition 1 (Neighbor-based Merging (NBM) [25]).
G [S ∪ S′] is k-vertex connected, if |S ∩ S′| + min{ |
NG[S′\S](S \ S′)|, |NG[S\S′](S

′ \ S) |≥ k.

Note that NG[S′\S](S \ S′) is the pure neighbors of S
in S′, i.e., excluding the overlapped vertices of S and S′.
As shown in Fig. 3, suppose S = {v1, v2, v3, v4} and

S′ = {v5, v6, v7, v8, v9}, then NG[S′\S](S\S′) = {v5, v7, v9},
NG[S\S′](S

′ \ S) = {v1, v3, v4}, since S ∩ S′ = ∅.
According to Proposition 1, in Fig.3, |S ∩ S′| + min{|

NG[S′\S](S\S′)|, |NG[S\S′](S
′\S) |= 0+min{3, 3} = 3 ≥ 3.

So NBM merges S and S′ as shown in Fig. 3(a). However,
if we delete two vertices v3 and v5 from the input graph, as

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5 𝑣6

𝑣7
𝑣8

𝑣9 √

(a) Neighbor-Based Merging

𝑣1

𝑣2
𝑣3

𝑣4

𝑣5 𝑣6

𝑣7
𝑣8

𝑣9 √√

(b) Exact Merging

Fig. 3: An example when Neighbor-Based Merging is incorrect

shown in Fig. 3(a), there will be no edges preserved between

S and S′, i.e., G[S ∪S′] is not 3-vertex connected. The exact
result is in Fig. 3(b). The mistake is that some vertices in

B(S) have multiple neighbors in B(S′), and vice versa. As a
result, they are included multiple times in counting neighbors.

Proposition 1 simply utilizes the minimum value of the vertices

on two sides, which does not consider this duplication.
2) The enumeration-based seeding is not efficient: VCCE-

BU [25] proposes a seeding method named LkVCS to find k-
VCSs around the neighborhood of vertices as seed subgraphs.

It restricts the search scope within the N2
G(u) neighborhood of

the start vertex u as a path length constraint. Then LkVCS enu-
merates vertex subsets of size k fromNG(u) and incrementally
adds vertices until it becomes a k-VCS or is sufficient to reject
the possibility of being a k-VCS. Because the combinational
enumeration has time complexity

(
dG(u)

k

)
= dG(u)!

(dG(u)−k)!k! ,

which can be very large, so the overall enumeration is slow.

Li et al. [25] further set a threshold α to restrict the

number of enumerations. To visit all the vertices in the graph,

LkVCS is invoked n times at the worst case, which runs

in O (α |Eavg|), where |Eavg | represents the average edge
number in G

[
N2

G(u)
]
. Thus, the time complexity for seeding

is O (nα |Eavg|). However, if the distribution of k-VCCs is
locally dense in the graph, setting a threshold may result in the

loss of many potential k-VCCs, which decreases the accuracy.

D. A Novel Multiple Expansion Framework for VCCE-BU

Seeing the above limitations, we propose a novel Multiple

Expansion framework for VCCE-BU. At first, to improve

accuracy, we must consider that the candidate expandable

multiple vertices can provide vertex-disjoint paths for each

other. Considering S is the vertex set of a k-VCS and C is a

candidate set in V \ S, we denote S′ = S ∪ C. We first give
the proposition when the set C can be expanded as a whole.

Proposition 2 (Collaboratively Multiple Vertex Expansion

(ME)). Given a k-VCS G[S] , a candidate set C. Let S′ =
S ∪ C. If ∀u ∈ C, v ∈ S′, u ≡k

G[S′] v, i.e., u has at least
k vertex-disjoint paths to all other vertices in S′ through
only edges in G[S′], then G[S′] is k-vertex connected, so all
vertices in C can be added into S simultaneously, i.e. S ← S′.

The ME raises two key problems: (1) how to select a candi-

date set. (2) how to efficiently count the vertex-disjoint paths.

The first problem determines the local searching scope, and

the second problem determines the verification complexity. In

Section IV, we first present the exact ME. In Section V, we set

C to be one-hop neighbors of S and present a Ring-based ME

3003



Q𝒌VCS FBM RME

𝐺 , 𝑘 : 𝑘-VCCs in 𝐺

: 𝑘-VCSs

while( [ ] gets further updated)

Fig. 4: Flow Diagram of RIPPLE

method (RME) for efficiency. So actually, the ME framework

provides the flexibility for choosing local searching scope C
based on the user’s preference for accuracy or efficiency.

Further, to address the inaccuracy problem of merging, we

present a Flow-Based Merging method (FBM) in Section IV.

To address the inefficiency problem of enumeration-based

seeding, we propose a Maximal Clique and BFS-based Seed-

ing algorithm (QkVCS) in Section V. As showm in Figure

4, RME, FBM, and QkVCS are integrated as RIPPLE, a new

practical VCCE-BU method in Section V. We show RIPPLE

is not only more accuracy benefited by RME and FBM but

also more efficient benefited by RME and QkVCS.

IV. EXACT LOCAL EXPANSION AND MERGING

In this section, we investigate the exact local expansion and

merging method.

A. Multiple Expansion: ME

The limitation of UE is that it only considers a single vertex

around the seed subgraph at each time of expansion. To solve

this problem, we propose an exact expansion approach based

on the idea of expanding multiple vertices simultaneously.

First, we introduce the definition of local connectivity
between vertices as follows.

Definition 4 (local connectivity [36]). Given a graph G, the
local connectivity of two vertices u and v through G, denoted
by κ(u, v,G), is defined as the size of the minimum cut whose
removal makes u and v disconnected. κ(u, v,G) is assumed
to be +∞ if two vertices are directly connected.

If the local connectivity of u and v is not less than k in
graph G, we denote u ≡k

G v, which means u and v have at
least k vertex-disjoint paths in G; and u �≡k

G v means u and
v have less than k vertex-disjoint paths in G. Moreover, we
define u ≡k

G S, if u ≡k
G v holds for every vertex v ∈ S.

We omit the index G when the context is clear. Before giving

multiple expansion conditions, we first introduce the following

concept: Given a graph G and an integer k, a vertex v is called
a side-vertex if there does not exist a vertex cut VC such that
|VC| < k and v ∈ VC [36]. Based on the side-vertex, we have
the following lemmas.

Lemma 1 ([36]). Given a graph G and an integer k, suppose
u ≡k v and v ≡k w, we have u ≡k w if v is a side-vertex.

Lemma 2 ([36]). Given a graph G, a vertex u is a side-vertex
if and only if ∀v, v ≡k v′ where v′ ∈ N(u).

Lemma 1 shows the transitive property about the local k
connectivity relation ≡k, while Lemma 2 gives the conditions

for determining the side-vertex.

Lemma 3. Given a vertex u /∈ S, a k-vertex connected
subgraph G[S], if there exists a vertex v ∈ S \B(S) satisfying
u ≡k v, then u ≡k S.

Proof. N(v) ⊂ S and S is k-vertex connected so that

∀w,w′ ∈ N(v), w ≡k w′, thus v is a side-vertex (Lemma
2). We have (i) u ≡k v (ii) ∀v′ ∈ S, v ≡k v′ (iii) v is a
side-vertex. According to Lemma 1, ∀v′ ∈ S, u ≡k v′, i.e.,
u ≡k S.

Lemma 3 gives the condition to determine the local con-

nectivity between a vertex and a k-vertex connected subgraph.
However, if S \ B(S) = ∅, Lemma 3 cannot be applied. To
address this problem, we introduce a virtual vertex σ, which is
adjacent to all vertices in S. Then we establish the following
theorem to expand multiple vertices simultaneously.

Theorem 1. Given a candidate set C and a k-vertex connected
subgraph G[S] with adding virtual vertex σ and edges {(σ, v) |
v ∈ S} to G[S], if u ≡k

G[S∪C] σ for all vertices u ∈ C,
G[S ∪ C] is k-vertex connected.

Proof. To prove that G[S∪C] is k-vertex connected, we need
to demonstrate that for any two vertices a and b in G[S ∪
C], a ≡k b. There are three situations: (i) ∀a ∈ S, ∀b ∈ S.
Obviously, a ≡k b because G[S] is k-vertex connected. (ii)
∀a ∈ C, ∀b ∈ S. b ≡k σ because b and σ are adjacent; σ
is a side-vertex as σ ∈ S \ B(S); and a ≡k σ based on the
conditions. Thus a ≡k b (Lemma 3). (iii) ∀a ∈ C, ∀b ∈ C.
Because we know a ≡k σ, b ≡k σ, and σ is a side-vertex, we
can derive a ≡k b directly. The theorem is proven.

Moreover, we demonstrate that adding σ will not affect the
local connectivity from any vertex u ∈ C to S because σ has
no neighbors outside S, i.e., it does not change the number of
vertex-disjoint paths from vertex u to any vertex v ∈ S.
Based on Theorem 1, an exact multiple local expansion ap-

proach is proposed which is called Multiple Expansion (ME).

Considering S is a k-VCS and C is the candidate neighboring

set that we want to explore. ME is based on calculating

the maximum flow in G[S ∪ C]. We use Max Flows→t
G to

represent the maximum flow from s to t in graph G. ME
adds a virtual vertex σ, and σ is connected to all vertices in
S. In each iteration, ME only remains vertices u in C which

satisfies Max Flowu→σ
G ≥ k. ME repeats the above process

until every vertex u ∈ C satisfies u ≡k
G[S∪C] σ.

The pseudocode of ME is shown in Algorithm 1. It uses

G[S] to denote the set of k-vertex connected subgraphs. For
each k-VCS G[S] to be expanded, we add virtual vertex σ
to S and connect it to all vertices in S. We then initialize
candidate set C = V \S and initialize the expanded vertex set
F = ∅ (Line 4). Next, it computes the maximum flow from

each vertex u ∈ C to σ, i.e., Max Flowu→σ
G[S∪C] (Line 6). It

adds the vertices whose max-flow value is no less than k to
the updated candidate set C∗ (Line 7). Then, if C∗ is equal
to C, i.e., all vertices in C∗ have k vertex-disjoint paths to v

3004



𝑣 𝑣

𝑣

𝑣 𝑣

𝑣 𝑣

𝑣

𝑣 𝑣

𝑣 𝑣

𝑣

𝑣 𝑣

(a) (b) (c)

Fig. 5: An example of the Multiple Expansion (ME)

Algorithm 1: ME
1 6
Input : G(V,E), k,G[S]
Output: updated G[S]

2 foreach G[S] ∈ G[S] do
3 add virtual vertex σ and edges {(σ, v) | v ∈ S} to G[S] ; do
4 C ← V \ S, F ← ∅;
5 calculate Max Flowu→σ

G[S∪C] foreach u ∈ C;

6 C∗ ← {u | Max Flowu→σ
G[S∪C] ≥ k};

7 if C∗ = C then
8 F ← F ∪ C∗;
9 else
10 C ← C∗;
11 go back to Line 5;

12 G[S] ← G[S ∪ F ];
13 while F 
= ∅;
14 remove σ and adjacent edges from G[S];

15 return S;

in G[S ∪C∗], ME adds C∗ to F . Otherwise, C is updated by

C∗ for later use in the next iteration (Lines 8-12). It adds all
vertices in F to S (Line 13) and iterates the above steps until
F becomes empty, i.e., S can no longer be expanded. Finally,
ME removes the virtual vertex σ and adjacent edge (Line 14).

An example to illustrate the process of the ME algorithm

is shown in Figure 5. Without loss of generality, we assume

that k = 3 and denote the virtual vertex as σ. The k-
vertex connected subgraph G[S] = {v1, v2, v3, v4, v5}, and
the candidate set C is indicated by the dashed line. First,

C = {u1, u2, u3, u4} is considered as the candidate set

shown in Figure 5(a). For all vertices in C, we calculate
their maximum flow to σ in the graph G[S ∪ C], and
we obtain Max Flowu1→σ

G[S∪C] = 2, Max Flowu2→σ
G[S∪C] = 3,

Max Flowu3→σ
G[S∪C] = 3, and Max Flow

u4→σ
G[S∪C] = 3. Therefore,

u1 is removed from C. After the update, C = {u2, u3, u4} as
shown in Figure 5(b). We calculate the maximum flow again

for each vertex in updated C and obtain Max Flowu2→σ
G[S∪C] =

2, Max Flowu3→σ
G[S∪C] = 3, and Max Flow

u4→σ
G[S∪C] = 3. So, u2

is also removed from C. Similarly, for C = {u3, u4}, we
calculate the maximum flow from u3 and u4 to σ, the results
are both 3. Now the expansion condition of ME is satisfied;

we add u3 and u4 to S as shown in Figure 5(c).

Theorem 2 (ME is exact). If the seed set is S and the
candidate set is initialized as C = V \ S, let’s denote C∗ the
vertex set expanded by ME, then ME can insure: (i) G[S∪C∗]
is k-vertex connected and (ii) �C, C∗ � C and G[S ∪ C] is
k-vertex connected.

Proof. We prove the two conclusions separately. (i) According
to Algorithm 1, ∀u ∈ S ∪ C∗, Max Flowu→σ

G[S∪C∗] ≥ k. This

is identical to ∀u ∈ S ∪ C∗, u ≡k
G[S∪C] σ. From Theorem 1,

G[S ∪ C∗] is k-connected. (ii) We prove it by contradiction.
Assume C∗ � C and G[S ∪ C] is k-vertex connected, then
∀u ∈ C , Max Flowu→σ

G[S∪C′] ≥ k for all C ′, where C ′ is a
candidate set updated by ME in a certain iteration and C ⊂
C ′ ⊂ V \ S. This contradicts that ∃u ∈ C and u /∈ C∗, u is
removed from C ′, i.e., ∃C ′, Max Flowu→σ

G[S∪C′] ≤ k.

However, setting C = V \ S will make the multiple

expansion very slow as the calculating max-flow overhead in

the entire input graph G is huge. In practice, we can restrict

the candidate set C as the h-hop neighbors of S (i.e., Nh(S))
to balance efficiency and accuracy.

B. Flow-Based Merging

We then revisit the condition of merging two k-VCSs in
the context of ME. We employ a max-flow calculation to

determine the vertex connectivity between two k-VCSs and
propose a Flow-Based Merging (FBM) method. In order to

compute the local connectivity between two k-VCSs, we
present the following theorem.

Theorem 3. Given two k-vertex connected subgraphs G[S]
and G[S′], adding virtual vertex σ and edges {(σ, v) | v ∈ S}
to G[S], adding τ and edges {(τ, u) | u ∈ S′} to G[S′], if
Max Flowσ→τ

G[S∪S′] ≥ k, then G [S ∪ S′] is k-vertex connected.

Proof. The proof is similar to Theorem 1. We still consider

three situations for any two vertices a, b in G[S ∪ S′]: (i)
∀a ∈ S, b ∈ S (ii) ∀a ∈ S′, b ∈ S′. In Cases (i) and (ii),
a ≡k b obviously because both G[S] and G[S′] are k-vertex
connected. (iii) ∀a ∈ S, b ∈ S′. We know Max Flowσ→τ

G[S∪S′] ≥
k ( i.e., σ ≡k τ ) and a ≡k σ, then b ≡k τ . Besides, σ and τ
are side-vertices, thus a ≡k b. The theorem is proven.

Based on Theorem 3, we propose a Flow-Based Merging

(FBM) method. Given two k-VCSs G[S] and G[S′], FBM
first adds two virtual vertices σ and τ to G[S] and G[S′]
respectively. Let σ be adjacent to all vertices in S and τ be
adjacent to all vertices in S′. If Max Flowσ→τ

G[S∪S′], FBM

merges G[S] and G[S′] and removes the virtual vertices.
The pseudocode of the FBM is given in Algorithm 2. For

each k-VCS G[S], we traverse the other k-VCSs for merging.
In detail, firstly it checks the size of the intersection between S

3005



Algorithm 2: FBM
Input : G(V,E), k,G[S]
Output: updated G[S]

1 foreach G[S] ∈ G[S] do
2 foreach G[S′] ∈ G[S] do
3 if | S ∩ S′ |≥ k then
4 put G[S ∪ S′] into G[S];
5 delete G[S] and G[S′] from G[S];
6 break and traverse the next G[S];
7 else
8 add σ and edges {(σ, v) | v ∈ S} to G[S], add τ

and edges {(τ, u) | u ∈ S′} to G[S′];
// σ ∈ S \ B(S), τ ∈ S′ \ B(S′)

9 calculate Max Flowσ→τ
G[S∪S′];

10 if Max Flowσ→τ
G[S∪S′] ≥ k then

11 delete σ, τ and the adjacent edges from
G[S ∪ S′];

12 put G[S ∪ S′] into G[S];
13 delete G[S] and G[S′] from G[S];
14 break and traverse the next G[S];

15 return S;

and S′. If it is greater than k, G[S ∪S′] is k-vertex connected
(Line 3). In this case, FBM adds G[S ∪ S′] to G[S] (Line
4) and remove G[S] and G[S′] from G[S] (Line 5). Then, it
moves on to the next k-VCS (Line 6).
Secondly, if the intersection size is not greater than k, FBM

adds a virtual vertex σ to S and makes it adjacent to all

vertices in S, the same with S′ by adding τ (Line 8). FBM then

computes theMax Flowσ→τ
G[S∪S′] between σ and τ (Line 9). If

theMax Flowσ→τ
G[S∪S′] ≥ k, it means that G[S∪S′] is k-vertex

connected. It then proceeds to the next k-vertex connected
subgraph and continues the loop (Lines 10-14). FBM repeats

the above process until any k-VCS pairs cannot be merged.

V. MORE EFFICIENT MULTIPLE EXPANSION

In the previous section, we introduced the exact expansion

method ME. However, ME is inefficient in practice due to

computing maximum flows frequently. In this section, we

propose a more efficient expansion algorithm named Ring-

based Multiple Expansion (RME) and a more efficient seeding

algorithm.

A. Ring-based Multiple Expansion

In ME, the computation time of the maximum flow is

influenced by selection C. The larger the C, the more accurate
the expansion and the higher the calculation time cost. We

design a ring-based multiple expansion algorithm (RME) that

provides both good accuracy and efficiency.

Given a seed subgraph S, we classify the vertices in B(S̄)
into K sets according to the vertex’s number of neighbors in

S. That is B(S̄) is classified into k sets, where Cr = {u |
u ∈ B(S̄) and |NS(u)| = r} for 1 ≤ r ≤ k − 1 ; and
Ck = {u | |u ∈ B(S̄) when |NS(u)| ≥ k}. Then a theorem for
ring-based multiple expansion (RME) can be given as follows.

Theorem 4. Given a k-vertex connected subgraph G[S], if a
maximal clique K ⊂ Cr satisfies (i) |K| ≥ k + 1− r and (ii)
|NS(K)| ≥ k, then G[S ∪ K] is k-vertex connected..

Proof. Graph G [S ∪ K] is k-vertex connected if u ≡k
G[S∪K] v

for any pair of vertices u, v in G [S ∪ K]. Since G[S] has al-
ready been k-vertex connected and all vertices in G [K] are ad-
jacent (Note that the local connectivity between adjacent ver-

tices is defined as +∞), so we only need to prove that ∀u ∈ K,
∀v ∈ S, u ≡k

G[S∪K] v. (i) As u ∈ Cr, |NS(u)| = r, i.e. u has r
neighbors in S. We denote them {wi|1 ≤ i ≤ r}, wi ∈ NS(u).
According to Menger’s Theorem, r vertex-disjoint paths from
u to v can be provided through the paths from u to wi,

i.e., u → wi → some vertices in S → v, 1 ≤ i ≤ r.
(ii) Known |NK(u)| = k − r and |NS(K)| = k, there
are another k − r vertex-disjoint paths from u to v, going
through u → ui → wr+i → some vertices in S → v, where
ui ∈ K, wr+i ∈ NS(ui) and wr+i /∈ NS(u), 1 ≤ i ≤ k − r.
Further, these r paths in (i) and k − r paths in (ii) can be
vertex-disjoint because there exists 1 path from u to each wi,

and wi ≡k v, 1 ≤ i ≤ k. Thus, there are k vertex-disjoint
paths from u to v, i.e. u ≡k

G[S∪K] v.

Based on Theorem 4, we propose the ring-based multiple

expansion algorithm (RME). For each k-vertex connected

subgraph S, RME considers B(S̄) as the candidate set in one
iteration and puts vertices v ∈ B(S̄) to one of the k groups
Ck, Ck−1, ..., C1 according to v’s number of neighbors in S
and expand multiple vertices simultaneously in each group

based on the structure between them.

Algorithm 3: RME
Input : G(V,E), k,G[S]
Output: updated G[S]

1 foreach G[S] ∈ G[S] do
2 do
3 Cr = ∅, r ∈ [1, k] , F = ∅;
4 foreach u ∈ B(S̄) do
5 r = min(|N(u) ∩ B(S)|, k);
6 Cr ← Cr ∪ u;

7 foreach u ∈ Ck do
8 F ← F ∪ u;
9 UpdateNeighbours(u);

10 for r = k − 1, k − 2, ..., 1 do
11 find maximal cliques MC of size ≥ k − r + 1 in

G[Cr];
12 foreach K ∈ MC do
13 if NS(K) ≥ k then
14 F ← F ∪ K;
15 UpdateNeighbours(v) for each

v ∈ K;

16 G[S] ← G[S ∪ F ];
17 while F 
= ∅;
18 return G[S];
19 Procedure UpdateNeighbours(u)
20 foreach v ∈ NB(S̄)(u) do
21 r = |NS(v)|;
22 remove v from Cr to Cr+1;
23 if r + 1 = k then
24 F ← F ∪ v;
25 UpdateNeighbours(v);

3006



𝑣1

𝑣2
𝑣3

𝑣4 𝑣5

𝑢1 𝑢2

𝑢3

𝑢4
𝑢6

𝑢7

𝑢8

𝑢9

𝑢10

𝑢11

𝑢5

vertex in 3-VCC vertex in 𝐶𝑆 vertex in 𝐶𝑆 vertex in 𝐶𝑆

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑢1 𝑢2

𝑢3

𝑢4
𝑢6

𝑢7

𝑢8

𝑢9

𝑢10

𝑢11

𝑢5 𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑢1
𝑢2

𝑢3

𝑢4
𝑢6

𝑢7

𝑢8

𝑢9

𝑢10

𝑢11

𝑢5

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑢1 𝑢2

𝑢3

𝑢4𝑢6

𝑢7

𝑢8

𝑢9

𝑢10

𝑢11

𝑢5 𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑢1
𝑢2

𝑢3

𝑢4
𝑢6

𝑢7

𝑢8

𝑢9

𝑢10

𝑢11

𝑢5 𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

𝑢1 𝑢2

𝑢3

𝑢4𝑢6

𝑢7

𝑢8

𝑢9

𝑢10

𝑢11

𝑢5

(a) (b) (c)

(d) (e) (f)

Fig. 6: An example for Ripple Expanding (k=3). Cr means vertices have r neighbors in seed subgraph (Shadow Area).

In Algorithm 3, we give the pseudocode of the RME

algorithm. For each k-vertex connected subgraph G[S], RME
firstly iterates over all the vertices u ∈ B(S̄) and classifies
them according to the number of neighbors they have in the

seed subgraph, i.e., |NS(u)| (Lines 4-6). Then, RME adds

the vertices in Ck to the expanded set F and updates the

neighbors of them by calling UpdateNeighbors (Lines 7-9),

which we provide explanations later. After that, RME finds

the maximal cliques in Cr with the size ≥ k − r + 1. If the
maximal clique K has not less than k neighbors in S, we can
add all the vertices in K to F and update the information about

their neighbors for each vertex v ∈ K (Lines 10-15). Finally,

we update G[S] to G[S ∪ F ] (Line 16) and repeat the above
process until F = ∅. In the specific operations implemented
by UpdateNeighbours, it iterates over all the neighbors in

B(S̄) of input vertex u. It removes them from Cr to Cr+1. If

r+1 ≥ k, we add that vertex to the F as well and recursively

call UpdateNeighbours(Lines 19-25).

An example is given in Figure 6(a), {v1, v2, v3, v4, v5} is a
seed subgraph to be expanded. At first, we classify vertices in

N(S) as shown in Figure 6(b), C3 = ∅, C2 = {u1, u2, u3, u4},
and C1 = {u5, u6, u7, u8}. Then, we find maximal cliques in
C2 with size ≥ 2. That is K1 = {u1, u2} and K2 = {u3, u4}.
Both of them satisfy Theorem 4 that |NS(K1)| = 3 ≥ 3,
|NS(K2)| = 3 ≥ 3. So K1 and K2 are expanded to the seed

subgraph, while we update u8 from C1 to C2 as shown in

Figure 6(c). However, C2 only has one vertex u8, so it can not
be expanded. Next we consider C1 and find K3 = {u5, u6, u7}
as the maximal cliques with size ≥ 3, so we add K3 to the

seed subgraph and update u8 to C3 as shown in Figure 6(d),

and u8 can be expanded directly. Therefore all vertices in
nb1(S) are traversed. By updating the seed subgraph, we get
6(e). Repeating the above process, we finally get 6(f). Now,

we successfully expand 11 vertices into the seed subgraph by

RME, while UE can not expand anyone of them.

B. Quickly Seeding k-VCS

We use the k-vertex connected subgraph as seeds, as we
introduced its definition before. Notice that k-VCS does not
require the subgraph to be maximal. Here, we propose two

approaches to extract k-VCS efficiently. The first one is to
find the maximal cliques with size ≥ k + 1. The second is to
run BFS k times to find k-VCS.

Our First seeding approach is based on the fact that a clique

with ≥ k+1 vertices is k-vertex connected. We can iteratively
find r-cliques as a seed by increasing r, where r represents the
size of a clique. However, there is a more efficient approach:

we find maximal cliques with size ≥ k + 1, which can be
achieved by Bron–Kerbosch algorithm in O(3

n
3 ). Although the

algorithm’s complexity is high, it finds the maximal cliques

efficiently in practice. On one hand, maximal cliques can

reduce the seed redundancy phenomenon that most seeds are

finally combined into one k-VCS; On the other hand, the
maximal cliques can effectively reduce the time required for

subsequent operations because plenty of vertices have been

added in the seeding stage.

The second seeding approach is running BFS k times to
find k-VCS. We introduce the following lemma:

Lemma 4. [27][36] Let G(V,E) be an undirected graph,
and let n denote the number of vertices. Let k be a pos-
itive integer. For i = 1, 2, . . . , k, let Ei be the edge set
of a breadth first search forest Fi in the graph Gi−1 =
(V,E − (E1 ∪ E2 ∪ . . . ∪ Ei−1)), where G0 = G. Then any
connected component in Fk is k-vertex connected subgraph.

The proof can be found in [36]. Now, we can find more k-
vertex connected subgraphs in O(k·(n+m)) times. Finally, for
all vertices that do not belong to any k-VCS, we use LkVCS to
perform the search. To sum up, we propose a quickly finding

k-vertex connected subgraphs algorithm QkVCS.

3007



Algorithm 4: QkVCS
Input : G(V,E), k
Output: The set of seed subgraphs G[S]

1 G[S] ← kBFS(G, k);
// Find k-VCS by running BFS k time [36]

2 G[S] ← G[S]∪ BK-MCQ(V, k + 1);
// collect maximal cliques with size ≥ k + 1

as k-VCS
3 foreach v ∈ V do
4 if �G[S], G[S] ∈ G[S] s.t. v ∈ S then
5 CandMaintain[v] ← 0;

6 foreach v ∈ CandMaintain in non-decreasing order w.r.t. deg
(v) do

7 if CandMaintain[v] = 0 then
8 G[C] ← LkV CS(G, k, v);

// Find k-VCS including v [25]
9 if C 
= ∅ then
10 G[S] ← G[S] ∪G[C];
11 foreach u ∈ C do CandMaintain[v] ← 1;

12 return G[S];

The pseudocode of QkVCS is shown in Algorithm 4. First,

QkVCS finds k-vertex connected subgraphs by running BFS
k times and adds them to the seed subgraphs set G[S] (Line
1). After that, it finds all maximal cliques with size ≥ k +
1 in the graph (Line 2). Then, it adds all the vertices not
added into any k-VCS before to CandMaintain and marks
them unvisited (Lines 3-7). Finally, it visits all the vertices in

the CandMaintain according to the non-decreasing order of
their vertex degree. If a vertex v has not been visited, QkVCS
find local k-vertex connected subgraph containing v by calling
the LkVCS algorithm (Lines 8-16).

C. The RIPPLE Algorithm

Now, we give the overall algorithm RIPPLE, which consists

of three algorithms: QkVCS, RME, and FBM. The pseudocode

of RIPPLE is shown in Algorithm 5.

Algorithm 5: RIPPLE(G, k)

Input : G(V,E), k
Output: G[R]: the set of k-VCCs

1 G[R] ← ∅;G[S] ← ∅;G [S′] ← ∅ ;
2 Find the k-core Gk of G;
3 G[S] ← QkVCS

(
Gk, k

)
;

4 while G[S′] 
= G[S] do
5 G[S′] ← G[S];
6 G[S] ←FBM

(
Gk, k,G[S]);

7 G[S] ←RME
(
Gk, k,G[S]);

8 G[R] ← G[R] ∪ G[S];
9 return G[R];

First, it gets the k-core Gk of the input graph G (Line 2).

Then, it calls QkVCS to generate k-VCSs as seed subgraphs
(Line 3). After that, QkVCS repetitively alternates between

calling FBM and RME until no k-VCS can be further ex-
panded or merged (Lines 4-7). It is worth noting that we

first use the merging algorithm to combine seeds. This is

because calling the merging part firstly helps avoid redundant

computations during the expanding phase as some seeds can

be merged. Finally, QkVCS returns k-VCCs in graph G.

Complexity Analysis. In the seeding phase, QkVCS calls
BFS k times to find side groups in O(k(n + m)). Next,
it calls Bron– Kerbosch algorithm to find maximal cliques

with size ≥ k + 1, which costs O
(
dn3d/3

)
, where d is

the degeneracy of the graph [9]. Finally, QkVCS invokes

the LkVCS algorithm for each vertices that is not included

in any seed subgraph, whose time complexity is O (α |m̄|),
where α is a threshold for enumerating combinations [25].

In fact, the number of remaining vertices is much less than

n, which is denoted by ñ. For simplicity, We use n̄ and m̄ to

represent the average number of vertices and edges of the seed

subgraphs, respectively. Thus, the time complexity for QkVCS

is O(k(n+m)+dn3d/3+αñ |m̄|). In the merging phase, the
time complexity of FBM is O(|S|2(n̄m̄2)), where |S| is the
number of seed subgraphs. In the expanding phase, the time

complexity for calculating the maximal cliques is O(|C| |C|
3 ),

where set C is the one-hop neighbors of a seed subgraph,

thus |C| << n. Determining and updating the neighbor set
takes O(m̄) time. Assuming I2 iterations are needed, it runs

in O(I2(|C| |C|
3 + m̄)) for one seed subgraph. Thus, the time

complexity of RME is O(|S|I2(|C| |C|
3 + m̄)).

VI. EXPERIMENTS

In this section, we present our experimental results. All ex-

periments are conducted on a machine with Intel(R) Xeon(R)

CPU E5-2667 3.20GHz and 128GB memory running Linux.

All algorithms are implemented in C++ and compiled with

GCC with the -O3 optimization1. We achieve parallelization by

OpenMP and utilize the compiler option -fopenmp. Algorithms

are terminated if their running time exceeds 105 seconds.

TABLE II: Statistics of the real-world graphs (d̄: average
degree, kmax: maximum k such that a k-VCC exists)

Dataset |V (G)| |E(G)| d̄ kmax
ca-CondMat 23,133 93,497 8.08 25

uk-2005 129,632 11,744,049 180.19 499

arabic-2005 163,598 1,747,269 21.36 101

sc-shipsec 179,104 2,200,076 24.56 25

ca-citeseer 227,320 814,134 7.16 86

ca-dblp 317,080 1,049,866 6.62 113

ca-MathSciNet 332,689 820,644 4.93 24

it-2004 509,338 7,178,413 28.19 431

cit-patent 3,774,768 16,518,947 8.75 64

socfb-konect 59,216,211 92,522,017 3.12 16

Datasets. We use ten real-world graphs with different

properties for evaluating the algorithms, which are downloaded

from Network Repository2 and Stanford Network Analysis

Project3. Statistics of the graphs are shown in Table II. |V (G)|
denotes the number of vertices, and |V (G)|represents the
number of edges. The average degree and the maximum k
such that a k-VCC exists are also shown in the second last

column and the last column, respectively.

Algorithms. We implement and compare four algorithms:
• VCCE-TD: Top-down algorithm based on [36].

1Our code is available at: https://github.com/Elssky/RIPPLE.
2https://networkrepository.com/
3http://snap.stanford.edu/data/index.html

3008



• VCCE-BU: Bottom-up algorithm based on [25].

• RIPPLE: Algorithm composed of QkVCS, FBM, and

RME (Section V).

• RIPPLE-ME: Replace RME with ME (Section IV).
Parameter Setting. For the dataset in Table II, we set the

default k (k ≥ 5) to be the minimum value that allows the

VCCE-TD algorithm to be completed within 105 seconds. We
set α := 103 for VCCE-BU, RIPPLE and RIPPLE-ME. For
RIPPLE-ME, we consider 1-hop neighbor of the seed for each

iteration in RME.

Metrics. As discussed in Section 5, RIPPLE is a heuristic
algorithm for extracting k-VCCs. There is no guarantee that
it will always be correct. The VCCE-TD mines the exact

k-VCCs, so we need to measure the accuracy of RIPPLE
and VCCE-BU compared to VCCE-TD. For this purpose, We

employ two metrics from [35] to evaluate the accuracy of the

algorithms, Fsame and JIndex, which are as follows.
Cross Common Fraction (Fsame) compares each pair of k-

VCCs, where one k-VCC is from the detected result, and the

other is from the real result, to identify the maximal shared

parts. Formally, it is defined as follows:

Fsame =
1

2

N∑

i=1

max
j

∣∣Si ∩ S′
j

∣∣+ 1

2

N′∑

j=1

max
i

∣∣Si ∩ S′
j

∣∣ (1)

where N and N ′ are the quantities of detected and real k-
VCCs respectively, and Si and S

′
j are the i-th detected k-VCC

and j-th real k-VCC respectively.
Jaccard Index (JIndex) is known for its sensitivity in

handling cases where vertices from multiple communities in

one result merge into a single community in another result,

thereby overcoming the slight variability of the Fsame. It can

be defined as

JIndex =
|V (St)|

|V (St)|+ |V (Sf1)|+ |V (Sf2)| (2)

where |V (St)| stands for the number of vertex pairs that are
respectively classified into the same k-VCC in both results,

|V (Sf1)| stands for the number of vertex pairs appearing
in the same k-VCC in the algorithm-produced results, but

in different k-VCCs in the truth, and |V (Sf2)| vice versa.
However, Jaccard Index cannot detect missing communities.

A. Efficiency Evaluation

We evaluate the running time of RIPPLE on all the datasets

and compare it with VCCE-TD and VCCE-BU. The results

are shown in Figure 7. The VCCE-TD curves that fails

to end within 105 seconds are not plotted. RIPPLE runs

consistently faster than VCCE-TD and VCCE-BU. On uk-

2005 with k=100, RIPPLE completes in 1,740 seconds, while
VCCE-TD runs over 80,000 seconds, and VCCE-BU runs

about 10,000 seconds. RIPPLE achieves a speedup of 46 times

compared to VCCE-TD and 6 times compared to VCCE-BU.

VCCE-BU is faster than VCCE-TD in most cases except

for it-2004, where over 30,000 seconds is spent on finding

seed subgraphs in LkVCS. Furthermore, we vary the value

of k to compare the running time changes among the three

algorithms. As we can observe, with the increase of k, the
running time of all three algorithms generally decreases, which

is attributed to the reduction of the k-core. However, on uk-
2005 and sc-shipsec, VCCE-TD has an increase of time due

to the pruning efficiency is reduced [36]. On most datasets,

RIPPLE and VCCE-BU exhibit a similar decreasing trend, as

both utilize the seed expansion framework, which is also in

line with our complexity analysis. Note that on ca-MathSciNet

with k=13, VCCE-TD outperforms VCCE-BU and RIPPLE.

We find it is because the seeding takes the major time of

bottom-up framework in this setting, while there are few k-
VCCs in the graph for top-down framework to traverse.

B. Accuracy Evaluation

In this section, we compare the accuracy of two heuristic

algorithms, RIPPLE and VCCE-BU, on all datasets, with exact

results obtained through VCCE-TD. Due to space limitations,

we present results for the top three k values for each dataset.
The results are shown in Table III.

TABLE III: Accuracy comparison

Dataset k
Fsame JIndex

RIPPLE VCCE-BU RIPPLE VCCE-BU

ca-CondMat

5 97.97% 91.62% 90.33% 87.81%

7 96.66% 86.87% 85.23% 68.28%

9 96.61% 87.15% 84.78% 66.53%

uk-2005

100 100.00% 100.00% 100.00% 100.00%

150 100.00% 100.00% 100.00% 100.00%

200 100.00% 100.00% 100.00% 100.00%

arabic-2005

5 99.92% 98.66% 98.64% 96.01%

7 100% 98.94% 99.99% 99.31%

9 99.99% 98.96% 99.97% 99.56%

sc-shipsec

18 95.35% 63.57% 95.10% 4.21%

19 92.12% 64.55% 89.50% 2.43%

20 86.88% 65.67% 81.65% 2.52%

ca-citeseer

7 96.59% 83.48% 54.49% 14.13%

9 98.08% 90.06% 61.82% 60.09%

11 98.38% 93.86% 52.46% 41.36%

ca-dblp

7 97.52% 86.10% 84.46% 65.59%

9 95.46% 84.60% 66.60% 43.82%

11 97.14% 88.70% 59.39% 20.57%

ca-MathSciNet

5 97.17% 85.37% 91.44% 73.73%

7 92.48% 65.81% 79.04% 19.36%

9 91.68% 68.56% 59.68% 12.09%

it-2004

11 100.00% 99.89% 100.00% 99.99%

13 100.00% 100.00% 100.00% 100.00%

15 100.00% 100.00% 100.00% 100.00%

cit-patent

13 89.21% 76.39% 71.16% 43.20%

15 83.44% 76.31% 44.90% 34.30%

17 81.65% 73.54% 43.66% 28.81%

socfb-konect

7 91.12% 55.07% 81.17% 7.68%

9 91.69% 54.04% 82.03% 6.13%

11 75.95% 52.84% 36.28% 9.57%

We observe that RIPPLE outperforms VCCE-BU in terms

of accuracy based on both Fsame and JIndex. The difference
between the two algorithms is more pronounced in the JIndex.
For example, on ca-dblp and ca-MathSciNet, the JIndex of
RIPPLE is at least 20% higher than that of VCCE-BU. On

sc-shipsec and scofb-konect, JIndex of VCCE-BU is even less
than 10%. We investigate the reason and find this is mainly due

to NBM’s misjudgment as shown in Figure 3(a). Additionally,

RIPPLE achieves Fsame scores above 80% on all datasets,

reaching 100% on uk-2005 and it-2004. We also observe a

3009



5 7 9 11 13
k

100

101

102

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(a) ca-CondMat

100 150 200 250 300
k

102

103

104

105

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(b) uk-2005

5 7 9 11 13
k

103

104

T
im
e(
s) VCCE-TD

VCCE-BU

RIPPLE

(c) arabic-2005

18 19 20 21 22
k

103

104

T
im
e(
s) VCCE-TD

VCCE-BU

RIPPLE

(d) sc-shipsec

7 9 11 13 15
k

101

102

103

104

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(e) ca-citeseer

7 9 11 13 15
k

101

102

103

104

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(f) ca-dblp

5 7 9 11 13
k

100

101

102

103

104
T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(g) ca-MathSciNet

11 13 15 17 19
k

104

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(h) it-2004

11 13 15 17 19
k

103

104

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(i) cit-patent

7 9 11 13 15
k

102

103

104

T
im
e(
s)

VCCE-TD

VCCE-BU

RIPPLE

(j) socfb-konect

Fig. 7: Effect of k on the running time of VCCE-TD, VCCE-BU, RIPPLE

phenomenon of decreasing accuracy with increasing k values
for both algorithms on ca-condmat, ca-MathSciNet, and cit-

patent. This decrease can be attributed to an increase in the

proportion of missed vertices during the expanding process.

TABLE IV: Comparison between RIPPLE and RIPPLE-ME

Dataset k
RIPPLE RIPPLE-ME

Time (s) Fsame JIndex Time (s) Fsame JIndex

ca-CondMat

5 98.69 97.97% 90.33% 30014.60 99.75% 99.54%

7 14.32 96.66% 85.23% 4205.27 99.19% 97.20%

9 3.75 96.61% 84.78% 561.24 97.82% 91.50%

ca-dblp

7 623.55 97.52% 84.46% time out - -

9 59.71 95.46% 66.60% 23686.59 98.71% 89.64%

11 18.16 97.14% 59.39% 499.72 98.58% 80.94%

ca-MathSciNet

5 4660.76 97.17% 91.44% time out - -

7 24.72 92.48% 79.04% 63880.08 99.32% 97.80%

9 4.23 91.68% 59.68% 32.43 94.12% 67.52%

cit-patent

13 763.13 89.21% 71.16% time out - -

15 369.84 83.44% 44.90% 15211.05 87.19% 55.17%

17 272.41 81.65% 43.66% 4272.34 94.23% 82.27%

In Table IV, we compare the performance of RIPPLE and

RIPPLE-ME on four datasets. In line with theoretical expec-

tations, RIPPLE-ME achieves higher accuracy than RIPPLE

consistently. However, RIPPLE-ME is much slower as it takes

more time on the max-flow calculation. For instance, on ca-

dblp with k = 7, RIPPLE-ME cannot complete within 105

seconds, whereas RIPPLE runs in 103 seconds. Besides, as k
decreases, the time taken by RIPPLE increases slowly, but the

time taken by RIPPLE-ME increases much more rapidly.

C. Memory Usage Comparison

The main memory usage of the algorithms is demonstrated

in Figure 8. RIPPLE and VCCE-BU consume significantly

less memory compared to VCCE-TD on most datasets. For

instance, on the ca-citeseer dataset, VCCE-TD occupies 24GB

of memory, while RIPPLE and VCCE-BU only require ap-

proximately 100MB of memory. This discrepancy is caused

by the utilization of graph partitioning in VCCE-TD to find

k-VCCs, which entails storing all the subgraphs generated
during each partitioning step in memory. Conversely, RIPPLE

and VCCE-BU only retain the initial seed subgraphs and

conduct expansions on them, this progress requires much

lower memory. On socfb-konect, the space occupied by the

two frameworks is close. This is because there is a large

k-VCC in the graph, and the process of maintaining and

updating its seed subgraph takes up most of the memory. When

comparing RIPPLE and VCCE-BU, despite RIPPLE incorpo-

rating multi-vertex expansion and max-flow-based merging,

both algorithms display comparable memory usage within the

same order of magnitude. Remarkably, on uk-2005, RIPPLE’s

memory consumption is lower, which is attributed to QkVCS,

by reducing the redundant seed subgraphs generation.

ca
-C
on
dM
at

uk
-2
00
5

ar
ab
ic-
20
05

sc
-sh
ips
ec
5

ca
-c
ite
se
er

ca
-d
blp

ca
-M
at
hS
ciN
et

it-
20
04

cit
-p
at
en
t

so
cfb
-k
on
ec
t

102

103

104

M
em

or
y
U
sa
ge

(M
B
)

VCCE-TD VCCE-BU RIPPLE

Fig. 8: Memory Usage: RIPPLE v.s. state-of-the-arts

D. Ablation Study

We conduct an ablation study on RIPPLE by replacing each

module by the corresponding module in VCCE-BU. The result

is shown in Table V. Firstly, we observed that RIPPLE has the

highest accuracy on all datasets, indicating that each module

can improve the accuracy. Secondly, we find that QkVCS

contributes the most on the acceleration effect, while FBM

and RME may trade time for accuracy. FBM and RME both

contribute on improving the k-VCC detection accuracy.

E. Others

Time Proportion Analysis. We analyze the specific impact
of each building block within RIPPLE on the overall running

time once the graph is loaded. Figure 9 reports the proportion

3010



TABLE V: Ablation Study of RIPPLE

Dataset k
RIPPLE RIPPLE-noQkVCS RIPPLE-noFBM RIPPLE-noRME

Time (s) Fsame JIndex Time (s) Fsame JIndex Time (s) Fsame JIndex Time (s) Fsame JIndex

socfb-konect 9 87.55 91.69% 82.03% 232.88 54.38% 6.72% 95.44 91.69% 82.03% 100.36 90.13% 78.65%

ca-dblp 7 623.55 97.52% 84.46% 701.06 89.05% 79.41% 2023.19 97.48% 84.31% 516.01 96.76% 80.61%

sc-shipsec 18 420.73 95.35% 95.10% 1121.95 85.57% 94.49% 550.16 85.57% 94.49% 178.03 94.74% 94.57%

uk-2005 100 1740.39 100.00% 100.00% 11580.30 100.00% 100.00% 752.96 100.00% 100.00% 1590.99 100.00% 100.00%

it-2004 15 7617.46 100.00% 100.00% 32227.26 100.00% 100.00% 4437.47 100.00% 100.00% 6717.07 100.00% 100.00%

*RIPPLE-noQKVCS: Replacing QkVCS by LkVCS in RIPPLE; RIPPLE-noFBM: Replacing FBM by NBM in RIPPLE; RIPPLE-noRME: Replacing RME by UE in RIPPLE;

of each part in the total running time: QkVCS (Algorithm 4),

FBM (Algorithm 2) and RME (Algorithm 3 on all datasets.

The FBM and RME is the most computationally expensive

part (more than 90%) on most datasets. For cit-patent, the

time used by verifying QkVCS takes the majority.

0 20 40 60 80 100
time proportion(%)

socfb-konect

cit-patent

it-2004

ca-MathSciNet

ca-dblp

ca-citeseer

sc-shipsec

arabic-2005

uk-2005

ca-CondMat

( )
QkVCS FBM RME

Fig. 9: Proportion of RIPPLE’s each part in total running time

Evaluate Seeding Efficiency. In Table VI, we show the

pruning effects of two algorithms: kBFS and BK-MCQ. On all

datasets, QkVCS achieves a pruning efficiency of over 80%

in total and a speedup of more than 4 times. BK-MCQ plays

a more significant role in pruning and covers all vertices in

uk-2005. The sum of vertices covered by kBFS and BK-MCQ

exceeds the total number of covered vertices. This indicates

that some vertices can be found as corresponding seeds in both

algorithms. Considering the inherent nature of overlapping in

k-VCSs, this phenomenon is reasonable.

TABLE VI: Evaluating QkVCS Efficiency

Dataset k
Coverage ratio of vertices in Gk

Speed up
kBFS BK-MCQ Total

ca-CondMat

5 65.82% 80.31% 93.37% 12.0

7 51.50% 73.81% 87.21% 8.6

9 38.54% 69.00% 81.44% 5.4

uk-2005

100 40.24% 100.00% 100.00% 15.3

150 4.51% 100.00% 100.00% 6.9

200 2.36% 100.00% 100.00% 4.1

arabic-2005

5 79.17% 99.65% 99.68% 19.8

7 72.48% 99.87% 99.87% 22.2

9 66.37% 99.82% 99.82% 10.1

ca-citeseer

7 35.45% 93.88% 95.23% 8.3

9 30.51% 97.09% 97.43% 10.7

11 28.02% 98.92% 98.93% 15.3

*Gk is the k-core of input graph G; Speed up is compared to LkVCS

Degree of Parallelism. Figure 10 shows the efficiency of
RIPPLE running in parallel is dependent on the graph struc-

ture. The parallelization of the RIPPLE is accomplished in

three steps. At first, in QKVCS, we use a paralleled BK

algorithm to find maximal cliques and traverse vertices in

CandMaintain in parallel to find the k-vertex connected
subgraphs. Secondly, for FBM, the pairwise combinations of
seed subgraphs are traversed in parallel to determine whether

they can be merged. Thirdly, RME is parallelized to expand
each seed subgraph independently. Specifically, according to

Figure 9, a smaller proportion of QkVCS and FBM leads to

higher parallelism. The reason is that there is data contention

for accessing seed subgraphs in these two algorithms, and

resolving this contention through locking results in decreased

parallel efficiency. We also observe that using 16 threads may

lead to slower acceleration compared to using 8 threads due

to the above phenomenon.

5 10 15
Number of threads

0.25

0.50

0.75

1.00

1.25
T
im

e
(i
n
ho

ur
s)

5

10

15

S
p
ee
du

p

ca-MathSciNet k=5

Time

Speedup

5 10 15
Number of threads

1.0

1.5

2.0

2.5

3.0

T
im

e
(i
n
ho

ur
s)

1

2

3

4

S
p
ee
du

p

it-2004 k=11

Time

Speedup

5 10 15
Number of threads

0.2

0.3

0.4

0.5

T
im

e
(i
n
ho

ur
s)

1.0

1.5

2.0

2.5

3.0
S
p
ee
du

p

uk-2005 k=100

Time

Speedup

5 10 15
Number of threads

0.05

0.10

0.15

T
im

e
(i
n
ho

ur
s)

1

2

3

4

5

S
p
ee
du

p

ca-DBLP k=7

Time

Speedup

Fig. 10: Running time and speedup as a function of the number

of threads for RIPPLE

VII. CONCLUSION

In this paper, we reveal the reason for the inaccuracy and

inefficiency of existing VCCE-BU methods. We reformulate

the local expansion problem of VCCE-BU as a multiple vertex

collaborative expansion problem and propose an exact Multi-

ple Expansion algorithm (ME) and an efficient Ring-based ME

method, i.e., RME. We also propose a Flow-based Merging

algorithm (FBM) and a Maximal Clique and BFS-based quick

seeding algorithm: QkVCS. To seek accurate and efficient

VCCE-BU, we propose RIPPLE, a parallel implementation of

QkVCS and RME. We conduct extensive experiments using

ten real datasets. The results show that RIPPLE is not only

much more accurate but also a magnitude faster than the state-

of-the-art VCCE-BU method. The proposed ME framework

also provides the flexibility to select the local search step size

based on the user’s preference for accuracy or efficiency.

3011



REFERENCES

[1] B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in
social network analysis: The maximum k-plex problem. Operations
Research, 59(1):133–142, 2011.

[2] J. A. Barnes. Graph theory and social networks: A technical comment
on connectedness and connectivity. Sociology, 3(2):215–232, 1969.

[3] A. K. Baruah. Traffic control problems using graph connectivity.
International Journal of Computer Applications, 86(11), 2014.

[4] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-Ismail,
and N. Preston. Finding communities by clustering a graph into
overlapping subgraphs. In IADIS AC, 2005.

[5] P. Bedi and C. Sharma. Community detection in social networks. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
6(3):115–135, 2016.

[6] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Efficiently
computing k-edge connected components via graph decomposition. In
Proceedings of the 2013 ACM SIGMOD international conference on
management of data, pages 205–216, 2013.

[7] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core decomposition
in massive networks. In 2011 IEEE 27th International Conference on
Data Engineering, pages 51–62. IEEE, 2011.

[8] J. Cheriyan, M.-Y. Kao, and R. Thurimella. Scan-First Search and Sparse
Certificates: An Improved Parallel Algorithm for k -Vertex Connectivity.
SIAM Journal on Computing, 22(1):157–174, Feb. 1993.

[9] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse
real-world graphs, 2011.

[10] S. Even and R. E. Tarjan. Network flow and testing graph connectivity.
SIAM journal on computing, 4(4):507–518, 1975.

[11] S. Forster, D. Nanongkai, L. Yang, T. Saranurak, and S. Yingchareon-
thawornchai. Computing and testing small connectivity in near-linear
time and queries via fast local cut algorithms. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2046–2065. SIAM, 2020.

[12] H. N. Gabow. Using expander graphs to find vertex connectivity. Journal
of the ACM (JACM), 53(5):800–844, 2006.

[13] F. Gasparetti, G. Sansonetti, and A. Micarelli. Community detection in
social recommender systems: a survey. Applied Intelligence, 51:3975–
3995, 2021.

[14] M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-
vertex strongly connected components in quadratic time. In International
Colloquium on Automata, Languages, and Programming, pages 713–
724. Springer, 2015.

[15] M. R. Henzinger, S. Rao, and H. N. Gabow. Computing vertex
connectivity: new bounds from old techniques. Journal of Algorithms,
34(2):222–250, 2000.

[16] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected
components. SIAM Journal on computing, 2(3):135–158, 1973.

[17] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss
community in large and dynamic graphs. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, pages
1311–1322, 2014.

[18] X. Jia, D. Kim, S. Makki, P.-J. Wan, and C.-W. Yi. Power assignment for
k-connectivity in wireless ad hoc networks. Journal of Combinatorial
Optimization, 9:213–222, 2005.

[19] P. Kindlmann and F. Burel. Connectivity measures: a review. Landscape
ecology, 23:879–890, 2008.

[20] I. M. Kloumann, J. Ugander, and J. M. Kleinberg. Block models
and personalized pagerank. Proceedings of the National Academy of
Sciences, 114:33 – 38, 2016.

[21] C. Komusiewicz. Multivariate algorithmics for finding cohesive subnet-
works. Algorithms, 9(1):21, 2016.

[22] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping
and hierarchical community structure in complex networks. New Journal
of Physics, 11:033015, 2008.

[23] C. Lee, F. Reid, A. F. McDaid, and N. J. Hurley. Detecting highly
overlapping community structure by greedy clique expansion. In
Knowledge Discovery and Data Mining, 2010.

[24] N. Li and J. C. Hou. Flss: a fault-tolerant topology control algorithm
for wireless networks. In Proceedings of the 10th annual international
conference on Mobile computing and networking, pages 275–286, 2004.

[25] Y. Li, G. Wang, Y. Zhao, F. Zhu, and Y. Wu. Towards k-vertex connected
component discovery from large networks. World Wide Web, 23(2):799–
830, Mar. 2020.

[26] Y. Li, Y. Zhao, G. Wang, F. Zhu, Y. Wu, and S. Shi. Effective k-vertex
connected component detection in large-scale networks. In Database
Systems for Advanced Applications: 22nd International Conference,
DASFAA 2017, Suzhou, China, March 27-30, 2017, Proceedings, Part
II 22, pages 404–421. Springer, 2017.

[27] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathematics,
5(1):54–66, 1992.

[28] D. Nanongkai, T. Saranurak, and S. Yingchareonthawornchai. Breaking
quadratic time for small vertex connectivity and an approximation
scheme. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 241–252, 2019.

[29] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum
quasi-clique problem. Discrete Applied Mathematics, 161(1-2):244–257,
2013.

[30] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in
network analysis. European Journal of Operational Research, 226(1):9–
18, 2013.

[31] S. Rahiminejad, M. R. Maurya, and S. Subramaniam. Topological and
functional comparison of community detection algorithms in biological
networks. BMC bioinformatics, 20(1):1–25, 2019.

[32] N. N. Sein. Overlapping community detection using local seed expan-
sion. Int. J. Comput., 37(1):27–34, 2020.

[33] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[34] A. Veremyev, O. A. Prokopyev, V. Boginski, and E. L. Pasiliao. Finding
maximum subgraphs with relatively large vertex connectivity. European
Journal of Operational Research, 239(2):349–362, 2014.

[35] M. Wang, C. Wang, J. X. Yu, and J. Zhang. Community detection
in social networks: an in-depth benchmarking study with a procedure-
oriented framework. Proceedings of the VLDB Endowment, 8(10):998–
1009, 2015.

[36] D. Wen, L. Qin, Y. Zhang, L. Chang, and L. Chen. Enumerating k-vertex
connected components in large graphs. In 2019 IEEE 35th international
conference on data engineering (ICDE), pages 52–63. IEEE, 2019.

[37] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community
detection using seed set expansion. Proceedings of the 22nd ACM
international conference on Information & Knowledge Management,
2013.

[38] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community de-
tection using neighborhood-inflated seed expansion. IEEE Transactions
on Knowledge and Data Engineering, 28:1272–1284, 2015.

[39] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community detection:
on free rider effect and its elimination. Proceedings of the VLDB
Endowment, 8(7):798–809, 2015.

[40] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li. Finding maximal
k-edge-connected subgraphs from a large graph. In Proceedings of the
15th international conference on extending database technology, pages
480–491, 2012.

3012


