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Abstract—Inferring network topology via inter-node distance measurements is an important problem. It is challenging when the

distance measurements are sparse because the lack of edge constraints may lead to ambiguous realizations that differ greatly from

the ground truth. The flipping ambiguities are caused by binary vertex cut sets in 2D and triple vertex cut sets in 3D, which are called

separators. This paper investigates conditions on whether the flipping ambiguities caused by these separators can be disambiguated

using neighborhood, full graph, and component-level conditions. Accordingly, local flipping-free condition (LFFC), global

flipping-free condition (GFFC), and component-based flipping free condition (CFFC) are proposed. Then a disambiguating framework

based on a combinatorial application of these conditions is proposed. It detects separators and first disambiguate separators locally by

LFFC, which converts the graph to a binary tree, whose leaf nodes are flipping-free components and edges are LFFC unsolvable

separators. Then the CFFC condition is further applied to disambiguate LFFC unsolvable separators between components. If k and g

separators are disambiguated by LFFC and CFFC respectively, the number of ambiguous solutions for network localization will be

reduced by 2kþg times. Finally, the flipping-free components realize node coordinates in their local coordinate systems and a residue-

based weighted component stitching algorithm (RWCS) is proposed to iteratively synchronize components’ local coordinates to

generate global coordinates of the network. Extensive simulations show the LFFC, CFFC and RWCS frameworks are efficient, which

resolve a major portion of flipping ambiguities and greatly improve the localization accuracy than the state of art algorithms in various

sparse network settings.

Index Terms—Network localization, negative edges, sparse networks, flipping free condition, tree of non-flipping components, component

synchronization

Ç

1 INTRODUCTION

WITH the rapid development of information technolo-
gies such as fifth-generation (5G) mobile networks

and the increasing popularity of smart things such as sen-
sors, robots, and Unmanned Aerial Vehicles (UAVs), there
is potential for networking vast numbers of heterogeneous
devices to form Internet of Things (IoT)[1], [2].Network local-
ization is a crucial problem in many IoT applications, such as
multi-agent formation control [3], [4], wireless sensor net-
works [5], [6], emergency services [7], [8], and structural
biology [9]. It infers node coordinates by a given partially
measured inter-node distance matrix and coordinates of
some anchor nodes.

The problem is known as graph realization,[10] when there
is no anchor, which focuses on inferring the geometric struc-
ture of the network that best satisfies the distance matrix
(D). This paper studies the disambiguation problem, which
is a key challenge in both network localization and graph reali-
zation. Localization and realization will be used inter-
changeably since the realized structure can be transformed
into the global coordinate system by selecting not less than

dþ 1 non-collinear nodes as anchors, where d is the space
dimension.

Solution uniqueness is a key challenge in graph realization
[11],which requires the graphhasn’t other ambiguous realiza-
tions that also satisfy D. Note that rigid transformations, i.e.,
the global rotation, translation, and reflection don’t change
the inner structure of a realization. Two realizationsP andP0

of a graph are said ambiguous if their inter-node distances
both satisfyD, butP0 cannot be rigidly transformed toP.

Existing studies show that being global rigid [10] is the
necessary and sufficient condition for the graph to be
uniquely realizable. The necessary condition for being global
rigid requires the graph to be redundant rigid and ðdþ 1Þ-
connected [12], where d is the space dimension. Algorithms
that check uniqueness of network localization are proposed in
[6], [11], [13]. Common agreements of these studies are that:
(1) the essence of being global rigid requires enough distance
measurements inD to restrict the node coordinates’ freedoms;
(2) lacking enough distance measurements may cause ambig-
uous solutions, which generate large errors in formation
calculation.

However, measurement sparsity is inevitable in practice.
The main reasons are: (1) reducing node deployment cost is
always required in practice, which generally results at sparse
networks; (2) the limited scope of ranging techniques, such as
signal round-trip time [14] or signal time of arrival (TOA) [15]
all have limited ranging scope; (3) the uneven node distribu-
tion in random deployment may also cause some parts of the
graph to be sparse, even if the overall density is fine. When a
portion of nodes has ambiguous solutions, the errors may
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impact the realization results of the whole graph due to itera-
tions in the graph optimization process [16], [17], [18].

To deal with sparsity, various theories and methods have
been proposed. The detailed related works are in Section 2.3.
A common idea is to exploit the knowledge provided by the
negative edges to form additional constraints. An edge ði; jÞ is
said positive if the distance between i, j is measured and is
said negative if i, j are out of the ranging scope. Existing
works add the negative edges’ inequality constraints into
the optimization problem to form a constrained optimiza-
tion problem[19], or divide the graph into patches to infer
the lengths of the negative edges in each patch by Triangle
Inequality condition [9], [20]. Although these methods
improve the localization performances, they haven’t pro-
vided an in-deep investigation to the local and global struc-
tural properties of where ambiguities may happen. This
paper proposes local, global, and component-based condi-
tions on where ambiguity may happen, and methods to
eliminate the ambiguities.

This paper provides two key observations: (1) ðdþ 1Þ-
connected components are flipping-free for generic networks
inRd (d ¼ f2; 3g); (2) a local condition can be designed to infer
the exact length of the negative edge in a basic flipping graph
(BFG) with high probability, which disambiguates the flip-
ping ambiguity in the BFG. These two conditions work in
graph level and neighborhood level respectively and can be
used in combination to greatly reduce the graph realization
ambiguities. The key contributions are as follows:

1) We first propose basic flipping graphs (BFG) in 2D and
3D, which are theminimum size graphs in which flip-
ping ambiguity may happen. Then a local flipping free
condition (LFFC) in BFGs is proposed, which can infer
the exact length of the negative edge in the BFG, so
that the flipping ambiguity of the BFG can be disam-
biguated with high probability. LFFC is a local condi-
tion using one-hop neighborhood information. We
show the advantages of LFFC than the traditional tri-
angle inequality (TI) condition in resolving more flip-
ping cases.

2) Then we prove a global flipping free condition (GFFC)
in the graph level. It proves that the dþ 1 connected
generic graphs in Rd are flipping-free for d 2 f2; 3g.
So in a rigid graph, each ðdþ 1Þ-connected compo-
nent is flipping free. Flipping may happen only at
the d-vertex cut sets, which are called flipping separa-
tors. We further propose a Component-based Flipping
Free Condition (CFFC) to determine whether flipping
ambiguity may happen at a flipping separator.

3) By utilizing CFFC and LFFC in combination, a flipping
separator detection, LFFC checking, and non-flipping tree
(NC-Tree) construction method is proposed. The algo-
rithm starts by finding a flipping separator and checks
LFFC on it. If LFFC is TRUE, the flipping ambiguity is
eliminated and another flipping separator will be
found and be checked. If LFFC is FALSE, the graph is
separated into two sub-graphs by the flipping separa-
tor. The result of the algorithm partitions the network
into a binary tree, called NC-Tree, whose leaf nodes
are ðdþ 1Þ-connected non-flipping components and
edges are LFFCunsolvable flipping separators.

4) CFFC condition is further applied on the NC-Tree to
resolve LFFC unsolvable separators using the multi-
hop geometrical condition. If k and g separators are
resolved by LFFC and CFFC respectively, the num-
ber of ambiguous realizations of the network will be
reduced by 2kþg times. All feasible realizations can
be inferred from the NC-Tree.

5) At last, to generate a realization with better tolerance
to ranging noises, a Residue-based Weighted Component
Stitching (RWCS) algorithm is developed. It first cal-
culates the local coordinates of each non-flipping
components in their local coordinate frames. Then
the local coordinates are synchronized by iterative
rotation and transition until convergence to produce
the global coordinates of the graph. We show by
extensive simulations that the proposed LFFC, CFFC
and RWCS framework resolves flipping ambiguities
efficiently and improves the network realization
accuracy greatly in sparse networks than the state of
art algorithms in various network settings.

The rest of the paper is organized as follows. In Section 2,
the problem model and related works are introduced. The
flipping free conditions are introduced in Section 3. The LFFC
checking and NC-Tree construction algorithm is introduced
in Section 4. The application of CFFC is introduced in
Section 5. The RWCS algorithm is presented in Section 6.
Algorithm analyses are given in Section 7. We present the
experimental evaluation in Section 8 and conclude the paper
with remarks in Section 9.

2 PRELIMINARIES AND BACKGROUND

2.1 Notations

The measurement graph is denoted by G ¼ ðV;E;DÞ, where
n ¼ jV j and m ¼ jEj are number of nodes and number of
edges respectively. D is the measurement matrix. The true
vertex coordinates are denoted by P ¼ fp1; . . . ;png which
are unknown. ðpi 2 RdÞ and d is the space dimension, which
is 2 or 3. ði; jÞ 2 E and dij ¼ kpi � pjk2 þ sij if kpi � pjk2 � R
whereR is a ranging scope and sij is the ranging noise. ði; jÞ is
called a negative edge if the true distance is beyond the ranging
scope. The objective of the problem is given in (1):

min
p1;���pn

fðp1; � � �pnÞ ¼
X
ði;jÞ2E

pi � pj

�� ��
2
�dij

� �2

8<
:

9=
;

s:t: pi � pj

�� ��2
2
> R;8ði; jÞ =2 E:

(1)

Notations used throughout this paper are as follows.
VðGÞ returns the vertex set in G. EðGÞ returns the edge set.
G½E� returns the graph generated by the edges in E with
their connected vertices. G½V � returns the graph generated
by the vertices in V with their inter edges. N ½v� is the one-
hop neighbor graph of a vertex v. n denote set minus. n is the
number of nodes and m is the number of edges. q denotes
the local coordinates of a node and Q denotes local coordi-
nates of a sub-graph. C ¼ fC1; . . . ;Cncg denotes the graph
components and Q ¼ fQ1; . . . ;Qncg are local coordinates of
each components; nc is the number of the components. s
denotes a separator; R denotes a rotation matrix and T is a
transition matrix. The terms graph realization and network
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localization are used interchangeably. The term “a separator s
is eliminated=resolved=disambiguated by LFFC” means the
length of a negative edge is inferred by LFFC thus the ambi-
guity caused by s no longer exists. CFFC disambiguates s by
finding one realization among the two possible realizations
of two componentsQl andQr is unfeasible.

2.2 Assumptions

The considered graphs are assumed generic. Generic graphs
are graphs where the node coordinates are algebraically
independent over the rationals and are dense in space [21],
which are widely assumed in network localization studies
[12]. G is considered a simple graph without multiple edges
between nodes nor self-loops.

G is also assumed rigid [22], because ifG is not rigid, there
will be one or more nodes who can change their coordinates
continuously in a neighborhood without violating the dis-
tance constraints. Such a non-rigid graph will have an unlim-
ited number of ambiguous realizations, which is not possible
to find a unique realization. Note that a rigid graph inRd is at
least d-connected [22]. So the rigid graph assumption implies
the considered graph is d-connected. Note that d-connected
rigid graphs are still very sparse, e.g., a 2-connected rigid
graphmay still havemany ambiguous realizations due to flip-
ping and flex ambiguities as shown in Fig. 1.

2.3 Related Works

To tackle realization ambiguity and to improve localization
accuracy, great attentions have been attracted. The literature
related to this article is classified as follows.

2.3.1 Rigidity and Topology Based Methods

Whether a network can have unique realization solution has
been widely investigated via rigidity theory by Jackson [21],
Goldenberg [11], Aspnes [23], and Yang [13], [24] et al. A
network can be uniquely realized if and only if the underly-
ing graph is global rigid [12]. Global rigidity requires the
graph to be ðdþ 1Þ-connected and redundant rigid [13]. The
necessary and sufficient condition for a 2-D graph being
rigid is given by Laman [25] in 1979. Later in 1997, Jacobs
proposed Pebble game [25] to test 2-D graph rigidity in
polynomial time. Connelly [22] showed that the Laman con-
dition is only necessary in Rd for d � 3. The rank of stress
matrix can be used as necessary and sufficient conditions
for judging graph rigidity in a higher dimension, which is
proposed by Connelly [22], Gortler et al. [26]. They show
that a graph in Rd; d � 3 is rigid if and only if rankðVÞ ¼
n� 1� d, where V is the associated stress matrix derived

from the graph. Gortler et al. [26] proposes polynomial-time
random algorithms for verifying graph rigidity in higher
dimensions. The rigidity theory has also been extended to
topology analysis to determine localizability. Yang et al.
[13], [24] propose the necessary and sufficient condition for
a node in the network to be uniquely localizable. The condi-
tion is based on the number of vertex disjoint paths to
anchor nodes. Shamsi et al. [27] study the conditions for cor-
rect network localization by SDP relaxation and show the
sparse triangulation graph can ensure the correctness of
SDP relaxation.

2.3.2 Geometric-Based Ambiguity Reduction

in Trilateration and Biliteration

Above rigidity analysis generally requires exact distance
information. To consider noise impacts, geometric methods
are investigated in the literature to avoid flipping ambiguities,
mainly in trilateration methods. Kannan [28] et al. point that
flipping may still happen even in global rigid graphs for the
noise impacts, e.g., when three reference nodes are nearly col-
linear. They propose a robustness criterion to detect flip ambi-
guities in neighborhood geometries.Wang et al. [29] show that
flipping detection equals to check whether there is a straight
line intersectingwith all range error circles, which is called the
existence of intersecting line (EIL) problem and a convex hull
algorithm is proposed to solve EIL. Liu et al. [30] improve the
EIL detection by showing it equals to determinewhether there
is a straight line, which enables any two ranging circles to
have an overlapping orthogonal projection on the line. Liu
et al. [31] further extends the problem to 3D. Guo et al. [32]
exploit the bounded errors of distance measurements and the
constraints of motions. They propose flipping avoidance con-
ditions for biliteration and trilateration for error bounded
measurements. Other trilateration based algorithms reduce
the probability of flipping happens by selecting “robust quad-
rilaterals” [33], [34] and “safe-triangle” [35]. Another direction
is to expand node localizability scope in sparse networks. Bilit-
eration [36] and shadow edge [37] methods are proposed, but
ambiguity risks also increase in suchmethods since they relax
the global rigid requirement in node localization. Error accu-
mulation is also a big challenge to the sequential trilateration
or biliterationmethods in large networks.

2.3.3 Ambiguity Reduction in Iterative Optimization

Methods

To avoid error accumulation, a large body of studies propose
iterative optimization methods [16], [17]. They treat network
localization as a graph optimization problem. In iterative
optimization, ambiguity ismainly tackled byutilizing the neg-
ative edges as constraints. Saha et al. [19] covert the optimiza-
tion problem with negative edge constraints to a Lagrangian
optimization problem and propose a root-finding algorithm.
[38] exploits the negative constraints to sharpen the probabilis-
tic distributions of the target locations. [39] proposes a convex
optimization model based on the euclidean Distance Matrix
(EDM). The negative constraints are represented as lower and
upper bounds on the elements in the distancematrix to reduce
the localization flexibility. [40] proposes to find the set of non-
locatable nodes and constructs an SDP formulation by adding
negative constraints to the non-locatable nodes, so as to

Fig. 1. (a) Flip ambiguity. Vertex E can be reflected across AD while sat-
isfying all distance constraints. (b) Flex ambiguity. If edge CE is
removed, then rejoined, the graph can flex along the arrow, obtaining a
different topology but exactly preserving all distance constraints.
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avoid ambiguous solutions. [41] employs a global consistency
check and a location correction phase in the localization pro-
cess to deal with flip ambiguity. Shi et al. [42] formulate an
optimization problem to minimize the worst-case estimation
error and propose a distributed algorithm to solve the prob-
lem. SDP[18] approaches localization by relaxing the problem
to a convex semidefinite programming problem. Xiao et al.
[43] propose a matrix completion based optimization method
for noise-tolerance.

2.3.4 Component Stitching Methods for Sparse

Network Localization

But the iterative optimizationmethods are sensitive to the net-
work sparsity. It is because the errors generated in the sparse
sub-graph will affect other parts in the iterative optimization
process. To overcome this, component stitching based meth-
ods are proposed to further deal with noises and sparsity.
ETOC [44] and CALL [45] study component merging condi-
tions and propose non-iterative algorithms to merge compo-
nents. To better tolerate noises, iterative component stitching
algorithms are proposed in ARAP [20], ASAP [9], WCS [47]
and WCKF [4] . ARAP [20] and ASAP [9] divide component
by one-hop neighborhood of each node. WCS [46] divides
components according to node density. WCKF [4] divides
components in 3D networks by finding two-center star
graphs. After partition, components are realized in local coor-
dinate systems and then synchronized by iterative registration
and least square estimation. Experiments show that compo-
nent stitching methods provide great accuracy and reliability
improvement than trilaterationmethods and centralized itera-
tive optimizationmethods in sparse and noisy networks.

2.3.5 Linear Barycentric Coordinate-Based Methods

for Efficient Network Localization

Above models consider the localization problem as a nonlin-
ear least square estimation problem [47]. Recent works have
also proposed to utilize barycentric coordinates to convert the
localization problem to a linear model, by iterations of a set of
linear equations in a fully distributed manner, see [48] for
comprehensive analysis. DILOC [50] calculates the barycen-
tric coordinates using the Cayley–Menger determinants, then
node coordinates are iteratively estimated by a linear function
of reference nodes’ coordinates with weights derived from
barycentric coordinates. DLRE [49] and DILAND [50] extend
DILOC to random environments and make DILOC robust to
communication noise, communication failure, and measure-
ment noise. ECHO [51] investigates signed barycentric coordi-
nates on triangles, which does not require that each node
should be located inside the convex hull of its neighbors (the
main limitation of DILOC). The computation of barycentric
coordinates for any possible network configuration is also dis-
cussed in [52], which further extends barycentric coordinates
to any dimension. But these studies mainly study in dense
networks, for a node needs enough neighbors to calculate the
barycentric coordinates.

2.3.6 Applications and Further Optimization

Much literature has been reported for application and fur-
ther optimization of network localization. Recent studies
refer this problem as network localization and navigation

(NLN)[53], [54], [55], [567], [57], [58], which concentrate on
promoting practical localization in a cooperative manner.
References [55], [56] provide theoretical foundation and
practical issues. Win et al. [53], [54], [56] yield new informa-
tion by introducing joint spatial and temporal cooperation.
The reliability of localization results is enhanced since addi-
tional information is exploited. Network operation strate-
gies such as node prioritization, node activation, and node
deployment are considered in [57], [58] for better localiza-
tion performance and prolonging the network lifetime. To
tackle the reliability degradation caused by multi-path
propagation and non-line-of-sight conditions, the ensemble
of positional and environmental information is investigated
as soft information to leverage measurements and contextual
data [59], [60], [61]. The key idea is to rely on all probable
range measurement values rather than on a single estimate
of each measurement.

However, explicit local and component-based conditions
to detect and to resolve flipping ambiguities are still lacked.
This paper investigates the flipping conditions and pro-
poses a jointly detecting, disambiguiting and localization
framework.

3 FLIPPING FREE CONDITIONS

A rigid graph may still has flip ambiguity and flex ambiguity,
which cause discontinuously deformed realizations as shown in
Fig. 1. Flip ambiguity happens when a sub-graph can flip
across an axis without violating the edge constraints. Flex
ambiguity happens if we remove one edge to deform the
graph continuously to another realization, and the removed
edge can be added back without violating the length con-
straints. A generic framework is global rigid if any two real-
izations of it are congruent, i.e., any two realizations of it
can be transformed to be a unique realization by rigid rota-
tion, transition or reflection. A global rigid generic graph
has a unique realization[12], [26].

3.1 BFG: Basic Flipping Graph

In practical applications, even if a graph is rigid, the composi-
tion of the discontinuous deformations may still cause a huge
number of ambiguous realizations. Since flex ambiguity has
much more rigorous conditions to happen than the flipping
ambiguities and can be avoided in redundantly rigid compo-
nents as discussed in our early work [46], we, therefore, focus
on resolving flipping ambiguity in this paper. We first con-
sider basic flipping components in R2 and R3 where flipping
ambiguitymay happen.

Proposition 1 (Basic Flipping Graph: BFG). A four vertex,
five edge component containing a flipping edge as shown in
Fig. 2a, and five vertexes, nine-edge component containing a
flipping face as shown in Fig. 2b are the simplest rigid graphs
that may have flipping ambiguity, i.e., rigid graphs having the
least number of vertices and edges that may have flipping ambi-
guity in R2 and R3 respectively.

Proof. The proposition is proved from three aspects. (1)
Graphs whose vertex number n < 4 in R2 and n < 5 in
R3 can all be enumerated. These graphs are either global
rigid (point, bar, triangle, and tetrahedron), in which flip-
ping ambiguity cannot happen, or non-rigid. (2) From
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rigidity theory [62], when a graph has n vertices it needs at
least nd� dþ1

2

� �
edges to be rigid inRd. Sowhen n ¼ 4 inR2

and n ¼ 5 in R3, at least 5 and 9 edges are required respec-
tively for being rigid. (3) The condition for flipping happen-
ing is that the graph is disconnected by removing d vertices.
When n ¼ 4;m ¼ 5; d ¼ 2, the topology in Fig. 2a is the
only topology and it satisfies the flipping happening condi-
tion.When n ¼ 5;m ¼ 9; d ¼ 3, removing the three vertices
on the flipping face in Fig. 2b will disconnect the graph and
other typologies with n ¼ 5;m ¼ 9; d ¼ 3 cannot be discon-
nected by removing three vertices. tu
Note that each BFG has one negative edge. A BFG has two

and only two possible ambiguous realizations. Fig. 2 shows
the two realizations TE and TF for a BFG respectively. TE is
the expanded topology in which the two nodes with degree d
are on the different sides of the flipping axis (face) and TF is
the folding topology in which the two nodes with degree d are
on the same side of the flipping axis (face) inRd.

3.2 LFFC: Local Flipping-Free Condition in BFG

3.2.1 Local Flipping-Free Condition

In a BFG, by using the negative edge constraint, i.e., dij > R if
ði; jÞ =2 E, a condition can be designed to eliminate the flipping
ambiguities in most of the BFGs, which confidently deter-
mines the unique realization from the two. The length of the
negative edge is also inferred if the condition is true. For clar-
ity, we present Local Flipping-Free Condition (LFFC) in BFG
inR2. The condition forR3 is given in Appendix C, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2020.3015480.

Lemma 1. In a BFG in R2, there must be xE strictly larger than
xF , where xE and xF indicate the length of the negative edge in
TE and TF respectively.

Proof. As shown in Fig. 3, A
0
is the symmetric point of A

about the axis BC. Thus AA
0
is perpendicular to BC. Let

DH be perpendicular to AA
0
and intersect at H. The fol-

lowing equations can be obtained:

xE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þAH2
p

xF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þA0H2
p

:
(2)

It can be seen that AH > A
0
H. AH ¼ A

0
H only when B,

C and D are collinear which is against the assumption
that the r-Quad is generic. Thus xE > xF . tu

Theorem 1 (LFFC: Local Flipping-Free Condition in
BFG). In a BFG with two ambiguous realizations, as TE and
TF shown in Fig. 2, TE is the unique realization, if

xE > R and xF � R; (3)

where

xE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2 � 2ac� cos ðaþ bÞ

p
xF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2 � 2ac� cos ð a� bj jÞ

p

a ¼ arccos
a2 þ e2 � b2

2ae

� 	
;b ¼ arccos

c2 þ e2 � d2

2ce

� 	
;

(4)

e is the length of the flipping axis. a, d, b, c are lengths of two
pairs of opposite edges, where a and d, b and c are the opposite
edge of each other as shown in Fig. 4.

The proof of Theorem 1 is given in Appendix A, available
in the online supplemental material. Using the same idea,
the LFFC condition for BFG in R3 and its proof are given in
Theorem 7 in Appendix C, available in the online supple-
mental material. Note that Theorem 1 and Theorem 7 not
only give a clear condition of when TE is the only feasible
realization for R2 and R3, but also infer the length of the
negative edge.

3.2.2 Reformulating the Triangle Inequality Condition

Triangle Inequality (TI) is one important method generally
exploited for filtering out ranging outliers [24] in network
localization. It can also be utilized to resolve flipping ambi-
guity. We reformulate TI to develop another local condition
for BFG disambiguating:

Theorem 2 (Triangle Inequality (TI) Condition). In R2,
for a BFG with two ambiguous realizations, i.e., TE and TF as
shown in Fig. 4, if maxfaþ d� e; bþ c� eg < R, then TE

is the unique feasible realization.

The proof of Theorem 2 is given in Appendix B, available
in the online supplemental material. But we find that com-
paring with LFFC, TI provides a very conservative condi-
tion in eliminating the flipping ambiguity.

Fig. 2. Basic flipping graphs in R2 and R3.

Fig. 3. The relationships of xE and xF .

Fig. 4. (a) Calculation of xE ; (b) Calculation of xF .
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3.2.3 The Advantages of LFFC than TI

Fig. 5 shows when flipping ambiguity can be eliminated as a
function of R. xF < maxfaþ d� e; bþ c� eg < xE can be
derived fromTI. Therefore, by TI, onlywhenR is located in the
range: maxfaþ d� e; bþ c� eg < R < xE , can the ambigu-
ity in the BFG be resolved. By LFFC, only if R is in the range:
xF � R < xE , will the ambiguity be resolved. But note that
both TI and LFFC cannot resolve the case when R < xE and
R < xF . In this case, the two topologies are both feasible. The
ambiguity cannot be told unless other information is known.
But such a case takes only a small proportion in practice.

We run simulations to generate 3000 BFGs in R2 ran-
domly and apply LFFC and TI to resolve the flipping ambi-
guities respectively. The simulation is conducted 100 times
and the average results are summarized in Table 1. By TI,
the flipping ambiguities in 37.5 percent BFGs can be
resolved, while LFFC can resolve ambiguities in 92.6 per-
cent BFGs on average. The remaining 7.4 percent is the case
when both xE > R and xF > R, whose ambiguities cannot
be determined by either TI nor LFFC.

3.2.4 LFFC Under Ranging Noises

The distancemeasurements are generally impacted by ranging
noises. Assume di;j ¼ kpi � pjk22 þ si;j, where si;j 	 Nð0; s2Þ
is zero mean Gaussian noise. Then the ranging noises have
more than 0.99 probability to be in the range of ½�3s; 3s�. To
tolerate ranging noises, the conditions in (3) can bemodified as.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2 � 2ac� cos ðaþ bÞ

p
> Rþ 3sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2 � 2ac� cos ð a� bj jÞ
p

� R� 3s:
(5)

3.3 GFFC: Global Flipping-Free Condition on a
Graph

Then we consider a condition from the graph level of when
flipping ambiguity cannot happen.

Theorem 3 (Global Flipping-Free Condition: GFFC). If a
generic graph is ðdþ 1Þ-connected in Rd ðd 2 f2; 3gÞ, then the
graph is free of flipping ambiguity.

Proof. We prove by contradiction. We consider the case
when d ¼ 2 and the same process holds for d ¼ 3.

Consider a generic graph G, which is 3-connected, i.e.,
any two nodes in G have at least three node-disjoint
paths. Without loss of generality, assume a subgraph
G1 2 G may flip across a line formed by two vertices
fB;Cg 2 G, as shown in Fig. 6. Then we select A 2 VðG1Þ
and D 2 VðGÞ n ðVðG1Þ [ fB;CgÞ who have two paths
going through B and C. Since A and D are 3-connected,
there must be a third path between A andDwhich has an
edge e that penetrates the line formed by fB;Cg. Since
the graph is generic, the endpoint of e is not exactly on
the line formed by BC; One endpoint of e is in G1 and the
other in G nG1. Considering the two flipping realizations
of G1, let A

0
and E

0
be the symmetric point of A and E

about the axis BC respectively. Thus EE
0
is perpendicu-

lar to BC. Let FH be perpendicular to EE
0
and intersect

atH. The following equations can be obtained:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FH2 þ EH2

p
e
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FH2 þ E0H2

p
:

(6)

Since EH ¼ ðHOþOEÞ 6¼ E
0
H ¼ ðHO�OE

0 Þ, so e 6¼ e
0

which contradicts to that the edge e is a positive edge
with known length. tu
So a ðdþ 1Þ-connected component in Rd is flipping-free.

From the proof of Theorem 3, if there is a d-vertex cut set in
a graph, i.e., if a graph can be disconnected by removing d
vertices, the graph is not ðdþ 1Þ-connected. The sub-graph
formed by the d-vertex in the cut set will form a flipping
face, which is called a flipping separator. Flipping ambiguity
may happen due to flipping across the flipping separator.

Definition 1 (Flipping Separator). Given a rigid graph G ¼
ðV;EÞ in Rd, if there is a d-vertex cut set V 0, where jV 0j ¼ d
and G½V n V 0� is disconnected, we call G½V 0� a flipping
separator.

In BFGs, the flipping axis in R2 and flipping face in R3

are flipping separators. A flipping separator is called
resolved if only one of the two ambiguous realizations is
feasible. The LFFC condition provides local methods to
resolve the flipping separator in BFG.

3.4 CFFC: Component-Based Flipping-Free
Condition

Then we consider a graph G containing a flipping separator
s ¼ G½V 0�. We denote the two disconnected sub-graphs Gl;s,
and Gr;s by removing the separator s, i.e., Gl;s \Gr;s ¼ ;.
The vertices in the two sub-graphs, and in the separator are
denoted by Vl, Vr and Vs respectively. The graph have two

TABLE 1
Experiments to Test How QI and TI Can Resolve Flipping

Ambiguity in Randomly Generated r-Quads

Number of BFGs TI is TRUE LFFC is TRUE Both LFFC and TI fail

3000 1125 2778 222
100% 37:5% 92:6% 7:4%

Fig. 6. If G1 has two realizations, the length of e must be different in
these two realizations, contradicting the known length of e.

Fig. 5. The range of R for disambiguating by TI and LFFC, respectively.
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ambiguous realizations P1 and P2 due to flipping ambiguity
across s. The point coordinates are denoted by set P1 ¼
fP1

l ;P
1
s ;P

1
rg and P2 ¼ fP2

l ;P
2
s ;P

2
rg respectively.

Theorem 4 (Component-based Flipping Free Condi-
tion: CFFC). For a graph G with a flipping separator s and
two ambiguous realizations P1 and P2, for k 2 f1; 2g, if

9pi 2 Pk
l and pj 2 Pk

r ; s.t. kpi � pjk2 � R; (7)

then the realization Pk is not feasible.

Proof. Since the two vertices i 2 Vl and j 2 Vr are discon-
nected, their inter-distance must be larger than R. If kpi �
pjk2 � R, the negative edge constraint is violated and the
corresponding realization is not feasible. tu
If (7) is satisfied in one of the two ambiguous realizations,

this ambiguous realization is not feasible, so the other one is
the unique solution. Note that these conditions only resolve
flipping ambiguity. Flex ambiguity may still happen in flip-
ping free components. But flex ambiguity has a much lower
probability to happen and can be resolved by finding redun-
dantly rigid components[46].

3.5 Overview of Disambiguating with Flipping Free
Conditions

In the following sections, we exploit the proposed flipping
free conditions to resolve flipping ambiguities and to generate
reliable realization for sparse graphs. The key idea is to use
LFFC and CFFC to check flipping separators until no flipping
separators can be further resolved. For clarity, the following
results are presented inR2. The main idea can be extended to
R3. The overview of the combined utilization of LFFC and
CFFC and the final graph realization is shown in Fig. 7.

1) At first a separator detection, LFFC checking and
non-flipping component tree (NC-Tree) construction
method is proposed. It starts by finding a separator
and checking LFFC on BFGs containing the separator.
If LFFC is true in any BFG, the separator is resolved
and it finds another separator to check. Otherwise, the
graph is separated into two components by the sep-
arator. This progress repeats until all separators in the
offspring graphs are checked by LFFC. The result
forms a binary tree whose leaf nodes are non-flipping
3-connected components and intermediate nodes are
LFFCunsolvable separators.

2) Then each non-flipping leaf component on NC-Tree
calculates local realizations of its nodes in a local
coordinate system. This enables CFFC to be applied
to further check the separators that cannot be
resolved by LFFC. If CFFC can resolve the flipping
ambiguity between two leaf nodes, the two nodes
are merged into one component and the separator is
resolved. The process starts from the leaf level to the
root and the result is a reduced NC-Tree.

3) Finally, in each unresolvable leaf components on the
reducedNC-Tree, node coordinates are in local coordi-
nate systems. A residue-based weighted component stitch-
ing algorithm (RWCS) is proposed to synchronize
their local coordinates to a common coordinate system
to finally generate the realization of the graph, i.e,P.

4 LFFC DISAMBIGUATING AND NC-TREE
CONSTRUCTION

At first, how to utilize LFFC to construct the NC-Tree is
introduced.

4.1 LFFC Checking

Although binary vertex cut sets can be found by SPQR tree
method in graph theory using Oðmþ nÞ time [63], instead
of finding all binary vertex cut sets, we detect an arbitrary
binary vertex cut set fvi; vjg at first. The separator formed
by this vertex cut set is denoted by s ¼ G½vi; vj�.

After a binary vertex cut set fvi; vjg is detected, according
to whether ði; jÞ 2 E or whether ði; jÞ exists implicitly (will
be explained in Section 4.3), the procedure of checking
LFFC for resolving the flipping ambiguity caused by fvi; vjg
is given in Fig. 8. The procedure can be separated into three
cases.

CASE 1: If ði; jÞ 2 E, and if vi and vj have two common
neighbours u; v, the quadrangle ðvi; vj; u; vÞ will be a BFG
using ði; jÞ as the flipping axis. We enumerate all common
neighbours of vi and vj to construct multiple BFGs using
ði; jÞ as the flipping axis. The result BFG set is denoted by
Bs. Then LFFC is checked for every BFG in Bs.

� If LFFC is true in any BFG in Bs, the length of a nega-
tive edge denoted by lðu; vÞ is inferred by expression
of xE in (4). This added edge resolves the flipping
ambiguity of s. The inferred edge ðu; vÞ is added into
G, which turns G to be:

Fig. 7. An overview of the proposed scheme using a graph of three separators as an instance.
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G ¼ G½E [ ðu; vÞ�; (8)

and Gwill not be partitioned by s.
� Otherwise, if LFFC is false for all the BFGs in Bs, s is

not resolved. It splits G into two subgraphs Gl;s and
Gr;s. Let’s denote the edges separated in two sub-
graphs by El and Er, where El \ Er ¼ ; and El [
Er ¼ E n ði; jÞ.

Gl;s ¼ G½El [ ði; jÞ� (9)

Gr;s ¼ G½Er [ ði; jÞ�: (10)

CASE 2: If ði; jÞ =2 E but it is implicit, the length of ði; jÞ is
inferred by implicit edge checking and calculation method
as will be introduced in Section 4.3. We add ði; jÞ into E. s
then includes vi; vj and ði; jÞ. The same procedure as intro-
duced in CASE 1 is applied to check s and partition the
graph accordingly.

CASE 3: LetC be the graph to be divided. If ði; jÞ =2 E and
ði; jÞ is not implicit, the length of ði; jÞ is inferred by the local
realization QC, which can be obtained using ARAP. Let qi

and qj be the coordinates of vi and vj in QC, dij ¼
jjqi � qijj2. Then s includes vi; vj and ði; jÞ. The same proce-
dure is conducted as in CASE 1 to check s.

Since multiple BFGs can be constructed in vi and vj’s one-
hop neighborhood, so LFFC can resolve the flipping ambi-
guity caused by fvi; vjg with high probability since flipping
is resolved if LFFC is true in any BFG.

4.2 NC-Tree Construction by LFFC Checking

To disambiguate separators of G network-wise, the LFFC
checking will be applied recursively in each separated graph.
Meanwhile, a non-flipping component tree (NC-Tree) is con-
structed. We use a structure node ¼< graph; separator > to
represent a node on the NC-Tree. The construction procedure
is carried out efficiently by a queuing data structure, whose
details are summarized inAlgorithm 1.

The NC-Tree is initialized with < G; ; > as the root
node. The queue stores the pending graph components and
is initialized as the root node of NC-Tree. Node is explored
by DEQUEUING queue while queue 6¼ ;. Then the separator
detection, LFFC checking routine is conducted for Node as in
Section 4.1. If s is detected in Node:graph and s is not solved

Fig. 8. LFFC checking procedure on a binary vertex cut set fvi; vjg.

Algorithm 1. LFFC Disambiguating and NC-Tree
Construction
Input:
1: G ¼ ðV;EÞ: the original graph.
Output:
2: NC-Tree: non-flipping components tree.
3: ns: separator number of G.
4: nl: number of separator solved by LFFC.
5: queue ;, ns  0, nl  0;
6: NC-Tree.root.graph G;
7: Push NC-Tree.root in queue;
8: while queue 6¼ ; do
9: Node Pop(queue);
10: if find bi cut set(Node.graph) = ; then continue;
11: end if
12: fvi; vjg  find bi cut set(Node.graph);(as in Section 4.1)
13: s Gðfvi; vjgÞ, ns ¼ ns þ 1;
14: ifmore than two subgraphs are obtained then
15: G½El�  the biggest subgraph, G½Er�  f Node.graph -

G½El�g
16: queue, NC-Tree split graphðG½El�,G½Er�,(i,j));
17: continue;
18: else
19: get two subgraphsG½El� andG½Er�;
20: end if
21: if ði; jÞ 2 E then =
CASE 1
=
22: goto LFFC Checking;
23: else if ði; jÞ is implicit then =
CASE 2
=
24: infer the length of ði; jÞ as in Section 4.3.3;
25: add the implicit edge to E;
26: else =
CASE 3
=
27: infer the length of ði; jÞ as in Section 4.1;
28: add the inferred edge to E;
29: end if
30: =
LFFC Checking
=
31: if LFFCðs)=true then
32: nl ¼ nl þ 1;
33: continue;
34: else
35: queue, NC-Tree split graphðG½El�,G½Er�,(i,j));
36: end if
37: end while
38: returnNC-Tree, ns; nl.
LFFCðs)
1: construct BFG set Bs as described in Section 4.1;
2: if 9BFG 2 Bs satisfies LFFC then
3: the length of ðu; vÞ in BFG xE in (4);
4: E  E [ ðu; vÞ;
5: returntrue.
6: end if
7: returnfalse.
split graphðs)
1: if (i,j)2 E or (i,j) is implicit then
2: Node.LeftChild.graph G½El [ ði; jÞ�;
3: Node.RightChild.graph G½Er [ ði; jÞ�;
4: else
5: Node.LeftChild.graph G½El�;
6: Node.LeftChild.graph G½Er�;
7: end if
8: Push Node.LeftChild, Node.RightChild in queue;
9: returnNC-Tree and queue.
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by LFFC, the divided components ENQUEUE. Meanwhile
they are put as the child nodes of Node on the NC-Tree; If
all separators on Node:graph are resolved or if Node:graph
has no separator, this node becomes a leaf node.

Note that there are very low probability that a flipping
separator divides the graph into more than two subgraphs.
In this case, we select the subgraph with the most vertices
as Gð½El�Þ and the union of other subgraphs as Gð½Er�Þ. If
there are more than one biggest subgraphs, random choice
is made. Then each graph is divided into at most two com-
ponents, which provides facilitation for LFFC checking.

On the NC-Tree, an intermediate node has node:graph
equals to a graph component and node:separator ¼ s is a
LFFC unsolvable separator. The root node’s graph is G.
Each leaf node has a non-flipping component as its
node:graph and node:separator ¼ ;. The number of interme-
diate nodes indicates the number of potential flipping ambi-
guities of G.

4.3 Check and Calculate the Implicit Edge

4.3.1 Implicit Edge

For a binary vertex cut set fvi; vjg, if edge ði; jÞ =2 E, from
[13], if fvi; vjg satisfies the condition in Definition 2, the
edge ði; jÞ exists implicitly.

Definition 2 (Condition of Implicit Edge). Consider a
graph G ¼ ðV;EÞ with two components separated by a binary
vertex cut set fvi; vjg, i.e., G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ,
where E1 [E2 ¼ E, E1 \ E2 ¼ ;, and V1 \ V2 ¼ fvi; vjg. If
both vi and vj belong to a rigid component in G1 and a rigid
component in G2, then edge ði; jÞ exist implicitly if ði; jÞ =2 E.

4.3.2 Implicit Edge Checking

From Definition 2, checking whether an implicit edge exists
between vi and vj is reduced to check whether there are rigid
graphs in Gl and Gr both containing fvi; vjg. It can be done
efficiently by adding ði; jÞ into Gl and Gr to form extended
subgraphs GI

l ¼ GðE1 [ ði; jÞÞ and GI
r ¼ GðE2 [ ði; jÞÞ. Then

we check whether there is a redundantly rigid graph in GI
l

that contains ði; jÞ by using Pebble Game[25] starting from
ði; jÞ. The same checking is conducted in GI

r . As is shown in
Fig. 9, if we can find redundantly rigid graphs containing
ði; jÞ in both GI

l and GI
r , an implicit edge ði; jÞ exists between

vi and vj. Otherwise, ði; jÞ is not implicit.

4.3.3 Implicit Edge Calculation

If ði; jÞ is implicit, even though the graph may have multiple
realizations, the length of ði; jÞ remains the same in each of
them[13]. The local coordinates of the initial graph Gl [Gr

can be realized by patch realization algorithms such as
ARAP[20]. The estimated distance between vi and vj in the

realized graph is used as the edge length of ði; jÞ. E is then
updated by E ¼ E [ ði; jÞ and G ¼ GðV;EÞ.

5 CFFC-BASED DISAMBIGUATING ON NC-TREE

On the constructedNC-Tree, all the leaf nodes are flipping free
components. The intermediate nodes are separators that can-
not be resolved by LFFC using one-hop information. But these
separatorsmay still be resolved by the Component-based Flip-
ping FreeCondition (CFFC) viamulti-hop information.

Suppose the set of leaf components on the NC-Tree are
C ¼ fC1;C2; . . . ;Cncg. Since all the leaf components are flip-
ping free, we realize the local coordinates of each leaf com-
ponent in its local coordinate system. Any realization
method can be used, such as ARAP[20]. The local coordi-
nates of C calculated in their local coordinate systems are
denoted by fQ1;Q2; . . . ;Qncg, in which Qi ¼ fq1

i ; . . . ;q
ni
i g

are the local coordinates of nodes in the component Ci.
Then we consider a bottom level separator s and its two

connected leaf nodes Cl and Cr. The local coordinates calcu-
lated for these two children are denoted byQl andQr respec-
tively. Since these two components share two vertices vi and
vj, there are twoways to stitch their realizations into one coor-
dinate system as shown in Fig. 10. The first way is thatQl and
Qr are stitched directly, and the second way is that Ql is
stitched with a flipping version of Qr along s. Their calcula-
tions are in (17). These two candidate stitching results are
denoted by Q̂1ðCl [ CrÞ and Q̂2ðCl [ CrÞ respectively.

5.1 Calculation of Q̂1ðCl [ CrÞ and Q̂2ðCl [ CrÞ
Cl and Cr share the cutting vertices vi and vj. Let ðql;xi ; ql;yi Þ,
ðql;xj ; ql;yj Þ and ðqr;xi ; qr;yi Þ, ðqr;xj ; qr;yj Þ be local coordinates of
fvi; vjg in Ql and Qr respectively. We choose the coordinate
system of Ql as the coordinate system after stitching with-
out loss of generality. Let ^ð�Þ be the stitched coordinate sys-
tem. So the coordinates of Cl don’t change:

Q̂l ¼ Ql: (11)

Their coordinates for directly stitching Cr and stitching the
flipping version are:

Q̂r ¼ RQr þ T or (12)

Q̂
0
r ¼ RfðgðQrÞFÞ þ T; (13)

respectively, whereR is a rotationmatrix andT is a transition
matrix. F is a flip matrix that turnover Qr to Q

0
r along s as

shown in Fig. 10. Note that to calculate the flipping realization

Fig. 9. (a) eij is implicit. (b) eij 2 redundantly rigid graphs in GI
1 and GI

2.

Fig. 10. StitchQr toQl. (a) Q̂
1ðCl [ CrÞ;(b) Q̂2ðCl [ CrÞ.
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ofQr along s, we need to consider Pr is rotated along s in 3D
space. So F is the 3D rotation matrix whose calculation can be
inferred to Appendix D, available in the online supplemental
material. fð�Þ means the operation of reducing dimension to
R2 by abandoning the third dimension. gðPrÞ adds a zero
value at the third dimension to upgradePr to 3D.

Let nx ¼ qr;xj � qr;xi , ny ¼ qr;yj � qr;yi , then:

T ¼ ql;xi � qr;xi
ql;yi � qr;yi

� 	
(14)

R ¼ cos u � sin u
sin u cos u


 �
; (15)

and from Fig. 5 of Appendix D, available in the online sup-
plemental material, we can calculate:

F ¼
2n2

x � 1 2nxny 0
2nxny 2n2

y � 1 0
0 0 �1

2
4

3
5; (16)

where u ¼ arctan
q
r;y
j
�qr;y

i

q
r;x
j
�qr;x

i
� arctan

q
l;y
j
�ql;y

i

q
l;x
j
�ql;x

i

is the rotation angle

to align fvri ; vrjg to fvli; vljg. Then the two realizations for
stitched Cl and Cr are denoted by

Q̂
1ðCl [ CrÞ ¼ Q̂l [ Q̂r

Q̂
2ðCl [ CrÞ ¼ Q̂l [ Q̂0r;

(17)

respectively.

5.2 CFFC Checking

CFFC proposed in Theorem 4 is applied to disambiguate the
two realizations Q̂1 and Q̂2 to determine which one is feasi-
ble. Without loss of generality, let’s consider the feasibility
of Q̂1. Let u be a node in Cl and v be a node in Cr. There real-
ized coordinates are denoted Q̂1

u and Q̂1
v in Q̂1 respectively.

Because these two nodes are in two separated components
separated by a binary vertex cut, the edge ðu; vÞ =2 E and
their real distance should be larger than R.

CFFC checks the feasibility of Q̂1 and Q̂2 by above idea as

inCFFCðQ̂k;Cl;CrÞ function inAlgorithm2. If 9kQ̂k

u� Q̂
k

vk �
R, CFFCðQ̂k;Cl;CrÞ returns FALSE, which means the reali-
zation Q̂k is infeasible.

5.3 NC-Tree Simplification by CFFC Checking

CFFCðQ̂k;Cl;CrÞ is brieflywritten asCFFCðQ̂kÞ. When only
one realization is feasible, the separator is resolved by CFFC
and its two leaf nodes can be merged into one to simplify the
NC-tree. Therefore, CFFC checking is started from the leaf
level onNC-Tree.

� For a separator s, if both CFFCðQ̂1Þ and CFFCðQ̂2Þ
are feasible, the separator s cannot be resolved and
the children can not be merged.

� If only one realization is feasible, the two child nodes
are merged into one component, as given by Line 16-19
inAlgorithm 2.

� In noisy cases, if both two realizations are infeasible,
the one with less violation of the negative edge con-
straints is chosen as the realization of the parent
node and the two children are merged.

In Algorithm 2. h mergeable records whether the hth
level of NC-Tree can be merged. If all separators on the hth
level cannot be merged by CFFC, h mergeable is set FALSE.
The process terminates when h mergeable is FALSE or the
root level of NC-Tree is reached.

Algorithm 2. CFFC Checking Algorithm

Input:
1: NC-Tree.
Output:
2: Simplified NC-Tree.
3: h the height of NC-Tree;
4: h mergeable TRUE;
5: while h > 1ANDh mergeable ¼ TRUE do
6: h mergeable FALSE, ;
7: for each connected pairNl,Nr on h-level of NC-Tree do
8: N  father node ofNl and Nr, s N:separator;
9: Cl  Nl:graph, Cr  Nr:graph;

10: calculate Q̂
1ðCl [ CrÞ and Q̂

2ðCl [ CrÞ as in Section 5.1

11: =
 denoted by Q̂
1
and Q̂

2
for brevity. 
=

12: if CFFCðQ̂1Þ AND CFFCðQ̂2Þ then
13: =
 Both Q̂

1
and Q̂

2
are feasible, cannot disambiguate. 
=

14: continue;
15: else
16: =
 At least one of Q̂

1
and Q̂

2
is infeasible 
=

17: =
 The two children are merged into one node and the
separator is resolved. =


18: N:graph ¼ Cl [ Cr,N:separator ¼ ;
19: h mergeable TRUE;
20: end if
21: end for
22: h h� 1;
23: end while
24: returnNC-Tree.
CFFC (Q̂

k
;Cl;Cr)

1: feasible flag TRUE;
2: for each u 2 Cl; v 2 Cr; euv =2 E do
3: if 9kQ̂k

u � Q̂
k

vk � R then
4: feasible flag FALSE;
5: break;
6: end if
7: end for
8: returnfeasible flag.

5.4 Generate All Feasible Realizations

After NC-Tree simplification, the remained separators are
CFFC unresolvable. Each separator indicates two ambigu-
ous realizations. We can generate all feasible, but ambigu-
ous realizations with the NC-Tree. There are totally 2K

ambiguous realizations where K is the number of remained
separators.

Let Qi be a set to store the ambiguous realizations of
node i of the NC-Tree. Initially Qi is initialized as fQig if it
is a leaf node, ; otherwise. Then the NC-Tree is traversed in
bottom-up level order and the following processes are con-
ducted for each pair of brother nodesNodel andNoder:

Step 1: LetQl,Qr andQf be the possible realizations of
Nodel, Noder and their father node Nodef , respec-
tively. For each Ql 2 Ql and Qr 2 Qr, calculate
Q̂1ðCl [ CrÞ and Q̂2ðCl [ CrÞ as in Section 5.1.
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Step 2: Conduct CFFC checking for Q̂1ðCl [ CrÞ and
Q̂2ðCl [ CrÞ and add Q̂k to Qf when CFFCðQ̂k;
Cl;CrÞ is TRUE, where k 2 f1; 2g. In noise scenar-
ios, it may happen that both of them return FALSE,
then the realization of Cl [ Cr by ARAP[20] will be
assigned toQf .

The process terminates when Nodef is the root node of
NC-Tree. Thus Qroot consists of all feasible realizations of G.
jQrootj ¼ 2K . For simplicity, we use P for Qroot. Fig. 15 in the
experiment section plots the localization errors of the multi-
ple feasible realizations.

6 RESIDUAL BASED WEIGHTED COMPONENT

STITCHING (RWCS)

Even though all the ambiguous realizations can be given,
network localization requires only one accurate solution.
Equation (17) calculates all feasible realizations by only stitch-
ing the components in differentways.However, it doesn’t uti-
lize iterative component synchronization, which is to solve an
optimization problem to iteratively minimize the stitching
error. It is reported in [4], [46], [64], which can greatly improve
the synchronization accuracy against ranging noises.

This section proposes a residue-based iterative stitching
method to generate a unique localization result by itera-
tively stitching of the local realizations of components.

6.1 Component Stitching for a Unique Localization

After CFFC checking, suppose the remained leaf components
on the simplified NC-Tree are C ¼ fC1; . . . ;Cncg and unsolv-
able separators are S ¼ fs1; . . . ; sKg. The corresponding local
coordinate systems areQ ¼ fQ1; . . . ;Qncg. A final synchroni-
zation process is conducted to generate a realization.

Each remained separator si contains two vertices. We
denoted the vertex set of separators by VS . Each node in VS can
form a patch which is the one-hop neighborhood of the node,
and the patch is realized in a local coordinate system. Then
these patches are synchronizedwith the components inC.

The idea of weighted component stitching in [46] is
exploited to realize the final graph. Let P ¼ fp1; . . . ;png be
the desired global coordinates of nodes. The objective of
component stitching is as following:

F ¼ min
P;R1;...;R

c
1
;...;

X
k2VS

X
m2Nk

pk � pmð Þ�Rk qk � qm

� ��� ��2
8<
:

þ
Xnc
l¼1

X
ði;jÞ2Cl

fðrlÞ pi � pj

� ��Rc
l qi � qj

� ���� ���2
9=
;

s:t:RT
kRk ¼ I;RcT

l Rc
l ¼ I;

(18)

which consists of two parts:

� patches synchronization: Nk is the one-hop neighbor-
hood of node k. Rk is the rotation matrix of the kth
patch Gk. qk and qm represent local coordinates of
the kth and themth node in patch Gk.

� leaf components synchronization:Rc
l is the rotationmatrix

of componentCl. qi and qj represent local coordinates
of the ith and the jth node in componentCl.

The components are higher weighted by fðrlÞ since they
have better realization quality [46] than patches of separator
vertices. The weight is set negatively correlated with the resi-
due error of local realization for insuring better local realiza-
tion has larger impacts on overall network synchronization.

Definition 3 (Residual Error (RE)). Considering a graph
G ¼ ðV;EÞ where jV j ¼ n and its realization result Q ¼ fq1;
. . . ;qng, the residual error (RE) is calculated as rðGÞ ¼P
ði;jÞ2E ðjeijj � jjqi � qjjjÞ2.

We use an exponential function as suggested in [46] to
increase the impact of realizations with small residues. Let
rl be the residue of the component Cl and rmax ¼ maxfr1;
. . . ; rLg, then the weight of component Cl is:

fðrlÞ ¼ ermax=rl : (19)

Algorithm 3. RWCS Algorithm

Input:
1: fC1; . . . ;Cncg: leaf components of simplified NC-Tree
2: fQ1; . . . ;Qncg: local coordinates of each component.
3: h: the maximum iteration times.
4: thrd: the convergence threshold.
Output:
5: P ¼ fpi; i ¼ 1; . . . ; ng: global coordinates of all nodes
6: initialize Pð0Þ by ARAP [20];
7: initialize Rkð0Þ and Rc

l ð0Þ by (20) using ICP [65].
8: calculate fðrlÞ for each component by (19);
9: t 1;
10: while jPðtÞ � Pðt� 1Þj jj > thrdAND t < h do
11: RkðtÞ, Rc

l ðtÞ  substitute Pðt� 1Þ to (18) (detailed as the
local phase in Section 6.2);

12: PðtÞ  substitute RkðtÞ and Rc
l ðtÞ to (18) (detailed as the

global phase in Section 6.2);
13: t t+1;
14: end while
15: return PðtÞ

6.2 The Synchronization Algorithm

The objective function of RWCS in (18) can be solved through
an Alternating Least-Squares (ALS) [46], which is an iteration
of two phases:

� In the local phase,P is set to be fixed to solve the rota-
tion matrix Rk and Rc

l . P is initialized through solving
the linear equations as in ARAP [20]. Then Rk and Rc

l

can be solved by the following optimization problem:

Rk ¼ argmin
R
f Pk � RQkk k2F : RTR ¼ Ig

Rc
l ¼ argmin

R
f Pl � RQc

l

�� ��2
F
: RTR ¼ Ig:

(20)

The optimizationproblem in (20) is a typical point cloud
matching problem that can be solved by Iterative Closet
Point (ICP) algorithm [66]. The ICP algorithm calculates
the rotationmatrix by efficiently SingularValueDecom-
position to align different point clouds,whose complex-
ity isOðu2Þ for a componentwith u nodes.

� In the global phase, allRk andRc
l are fixed to solveP. n

linear equations can be set up by making the gradient
@F
@pi
¼ 0 for i 2 f1; . . . ; ng. Thus, the global coordinates
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can be obtained by solving these n linear equations
and then substituted into (18) to solveRk andRc

l .
The procedure iterates until P is converged or reaching a

maximum iteration time.

7 ALGORITHM ANALYSES

This section provides property analyses for the proposed
algorithms, including the validity, the disambiguating per-
formance, and the complexity.

7.1 Validity of Decomposition

The paper assumes that the graph is rigid (see Section 2.2). To
iteratively construct the NC-Tree, the rigidness of the sub-
graphs in the decomposition process is verified as follows.

Theorem 5 (Rigidness of Subgraphs). If a graph G ¼
ðV;EÞ is rigid and is divided by a separator s using Algorithm 1
into two components Gl and Gr, then the divided components
Gl and Gr are also rigid.

Proof. Suppose jV j ¼ n. SinceG is rigid, it contains a spanning
Laman graph, denoted by L. L has 2n� 3 edges and any k
vertex sub-graph of L has no more than 2k� 3 edges [12].
The separator divides L into Ll and Lr. Suppose jVðLlÞj ¼
k1; jVðLrÞj ¼ k2 then n ¼ k1 þ k2 � 2 since the two vertexes
of the separator are copied into two sub-graphs.

By Laman condition, without loss of generality, 2k1 �
4 � jEðLlÞj � 2k1 � 3 and 2k2 � 4 � jEðLrÞj � 2k2 � 3,
since 2k1 þ 2k2 � 7 ¼ 2ðn� 2Þ � 3. Otherwise L is not
rigid. By dividing using Algorithm 1 , if the separator edge
e exists, it will be divided into two edges and are added
into Gl and Gr. If the separator edge originally doesn’t
exist, each subgraph adds a new edge. In either way,
jEðLlÞ þ ej � 2k1 � 3 and jEðLrÞ þ ej � 2k2 � 3. They both
contain a Laman graph and are both rigid. tu
So each component divided byAlgorithm1 remains rigid.

7.2 Performance of Disambiguating

We now provide the theoretical performance of disambigu-
ating. Suppose the original rigid graph G has cðGÞ number
of potential ambiguous realizations, including the flipping
and flex ambiguities.

Theorem 6. In construction of NC-Tree, if LFFC resolves k sepa-
rators, and CFFC resolves g separators, the number of ambigu-
ous realizations is reduced from cðGÞ to cðGÞ

2kþg .

Proof. If s1 is resolved by LFFC or CFFC, the flipping ambigu-
ity between G

0
l;s1

and G
0
r;s1

is eliminated. Originally, cðGÞ ¼
2cðG0l;s1ÞcðG

0
r;s1
Þ. After s1 is resolved, cðG0Þ ¼ cðG0l;s1Þc

ðG0r;s1Þ ¼
cðGÞ
2 . This process holds for all resolved separators

s2; . . . ; skþg, since LFFC and CFFC are applied sequentially

and resolve different separators. The total number of ambi-

guitieswill be reduced to cðGÞ
2kþg . tu

7.3 Complexity Analysis

Theorem 7. Given a sparse network with the underlying graph
G ¼ ðV;EÞ, where jV j ¼ n and jEj ¼ m. We consider the node
degree is bounded by D for sparse networks. The complexity of
the proposed scheme for localizing this network is Oðh � n3Þ,

where h is the maximum iteration time in the synchronization
algorithm.

Proof.

� In LFFCdisambiguating andNC-Tree construction,
the time complexity of finding 3-connected compo-
nents and separators is OðnþmÞ [67]. If a detected
separator divides the graph into more than two
sub-components (n� 2 components in the worst
case), thus finding the one with most vertexes is an
operation of OðnÞ. Suppose K separators are
obtained, 0 � K � m. Implicit edge checking is
conducted by redundant rigidity checking using
Pebble Game. Suppose c components are obtained
by the K separators and the scale of each compo-
nent is n=c. The worst-case performance of Pebble
Game is OððncÞ2Þ for any component [25]. The time
complexity of implicit edge checking is c �OððncÞ2Þ ¼
Oðn2Þ. Then LFFC checking is conducted by con-
structing BFGs for each separator using N ½vi� \
N ½vj�, whose time complexity is OðK � D2Þ, and the
worst case is Oðm � D2Þ, thus Oðn � D3Þ. So the total
complexity for implicit edge checking and LFFC
checking isOðn2Þ þOðn � D3Þ.

� In CFFC disambiguating, suppose w separators
are unresolvable by LFFC, 0 � w � K � m. First,
we give a local realization of each component by
ARAP, whose time complexity is Oðw � h � ðnwÞ3Þ,
where n

w represents the average node number of
each component. Then we check feasibility of Q̂1

and Q̂2 by CFFC, whose time complexity is Oðw �
ðnwÞ2Þ. Thus, the time complexity of CFFC disam-
biguating is Oðw � h � ðnwÞ3 þ w � ðnwÞ2Þ ¼ Oðh � n3

w2Þ,
whose worst case is Oðh � n3Þ.

� Finally, the proposed RWCS algorithm has the
same time complexity with the synchronization
step of WCS [46], which is Oðh � n3Þ.

Therefore, CFFC disambiguating and RWCS are the
most time-consuming steps. The total time complexity of
the proposed scheme is Oðh � n3Þ. tu

Table 2 shows the time complexity comparison of the pro-
posed scheme, WCS, ARAP, SDP and SMACOF.

8 PERFORMANCE EVALUATION

8.1 Simulation Settings and Performance Metric

Simulations are conducted in Matlab2018. n sensors are
deployed randomly in an area of 100 m � 100 m. Two varia-
bles are controlled for network settings: 1) average node
degree; 2) ranging noises. The average degree is controlled by
varying the maximum ranging radius R. The average node
degree indicates the edge density of the network. The smaller
the average node degree is, the sparser the network is.

TABLE 2
The Time Complexity for Selected Algorithms

Proposed WCS ARAP SDP SMACOF

Oðhn3Þ OððDnÞ3 þ hn3Þ Oðhn3Þ Oðm3:5Þ Oðhn2Þ
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The ranging noises are assumed zero-mean Gaussian dis-
tributed, i.e., Nð0; s2Þ, where the noise level is controlled by
varying s [29], [46]. The average normalized localization

error is adopted as the accuracy metric: e ¼
Pn

i¼1 pi�p
0
i

�� ��
n

where pi is the ground truth and p
0
i is the realized result of

a method.

8.2 Validity of LFFC and CFFC

As mentioned in Theorem 6, if kþ g separators are resolved
by LFFC and CFFC, the flipping ambiguity will be decreased
at a scale of 2kþg. We generate different network typologies to
evaluate the disambiguation capability of LFFC and CFFC.
The network configurations are: (i) Average degree changes
from 5 to 9 and (ii) s varies in the range of f0; 2; 5g. We run
experiments for 100 times for each setting and calculate the
average value. The generated networks are kept rigid bymov-
ing the flex node to a close-by node if the flex node exists in the
randomly generated networks.

8.2.1 The flip ambiguity solved by LFFC and CFFC

Table 3 presents the probability of eliminating all ambiguities
when ranging is noiseless. D represents the average node
degree in the network.We can seewhen the network becomes
denser, the proposed methods have higher probability to
resolve all the flipping ambiguities in the network.

Table 4 shows the average number of flip ambiguity solved
byLFFC andCFFC in four different settings. The average num-
ber of potential flipping ambiguities are compared in the table,
which is calculated by averaging 2jSj, where jSj is the number
of resolved separators in the graph. For example, in the first
row, without using CFFC and LFFC, the average number of
potential flipping ambiguities in 100 experiments is 3040.30;
LFFC can on average resolve 3003.5 potential flipping ambigui-
ties andCFFC can on average resolve 31.15. Only 5.65 potential
flipping ambiguities cannot be resolved by LFFC andCFFC. So
LFFC and CFFC can efficiently resolve a major portion of
potential flipping ambiguities and LFFC contributes the major
part. The LFFC and CFFC unresolvable flipping ambiguities
become very limited. It can be concluded that most flipping
ambiguities are eliminated by LFFC andCFFC in the proposed
scheme,which leads to accurately final realization.

Fig. 11 provides a more clearly comparison including the
variance values. The average percentages of resolved separa-
tors by LFFC andCFFC are presented. The black lines are var-
iances. The results show that LFFC and CFFC can resolve
more than 50 percent separators even in the most sparse and
noisy cases, whereD ¼ 5 and s ¼ 5.

8.2.2 LFFC and CFFC’s Contribution on Reducing

Localization Errors

The contribution of LFFC and CFFC on reducing the locali-
zation errors is detailed in Fig. 12. The proposed scheme is
“LFFC + CFFC + RWCS”. “LFFC + RWCS” means CFFC is
not used; “RWCS” means both LFFC and CFFC are not
used. The x-axis is the average node degree and the y-axis is
the average localization error. It can be seen that the locali-
zation errors decrease as the average node degree increases,
i.e., when the network becomes less sparse, which is consis-
tent with our common sense. RWCS without LFFC and
CFFC has the largest localization errors as expected and
“LFFC + CFFC + RWCS” provides the smallest localization
errors in all cases. Statistical results show that LFFC and
CFFC help to reduce 33 percent localization errors on aver-
age, even in the most sparse and noisy cases.

8.2.3 Visualize the impacts of LFFC and CFFC

A sparse network of 100 nodes with D ¼ 6 and s ¼ 0 is
instantiated in Figs. 13 and 14, where black points represent

TABLE 3
The Probability of Eliminating All Ambiguities

D 5 6 7 8 9

P 0.32 0.44 0.59 0.69 0.82

TABLE 4
The Number of Ambiguities Solved by LFFC or CFFC

Parameter
Setting

Flip
Ambiguity

Solved by
LFFC

Solved by
CFFC

After LFFC
and CFFC

D ¼ 5; s ¼ 2 3040.30 3003.50 31.15 5.65
D ¼ 5; s ¼ 5 498.00 468.35 12.38 17.27
D ¼ 7; s ¼ 2 215.27 205.95 5.06 4.16
D ¼ 7; s ¼ 5 245.57 233.44 6.39 5.74

Fig. 11. The percentage of resolved separators by LFFC or CFFC.

Fig. 12. The localization error with removing LFFC or CFFC from the
proposed scheme.
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for the ground truth and the green cross markers show
localization results. The blues lines show localization errors.
The shorter are the blue lines, the more accurate are the
localization results. Additionally, red lines represent sepa-
rators of the network. Pink lines are resolved separators and
red lines are unresolved separators. Yellow lines represent
the inferred negative edges given by LFFC. Since s ¼ 0, the
localization error is mainly caused by flipping ambiguity.
Comparing Figs. 13 and 14, most of the flipping ambiguities
are eliminated and the localization accuracy is improved
greatly by LFFC and CFFC.

8.3 Validity of RWCS

This section verifies the accuracy and convergence effi-
ciency of RWCS.

8.3.1 Errors of All Feasible Solutions and Errors

of RWCS

From the simplified NC-tree, all feasible ambiguous realiza-
tions can be calculated as in Section 5.4. Fig. 15 shows the
localization errors of all feasible realizations in 10 graph
instances. The black bar shows the interval of the localiza-
tion errors of the feasible solutions. The errors of each feasi-
ble solution are plotted on the bar. We also compare the
errors of WCS [46] and our proposed method. Our pro-
posed method is referred to LFFC+CFFC+RWCS. It can be
seen clearly, our proposed method has the smallest

localization errors comparing with WCS and those of all the
feasible solutions. This is benefited by the ambiguity reduc-
tion and residue-based iterative stitching process proposed
in RWCS.

8.3.2 Convergence of RWCS

How the nodes locations are converged from initial states to
the final states in RWCS is shown in Fig. 16a, when D ¼ 6 and
s ¼ 0. The green diamonds represent the initial positions
given by ARAP. Blue points and red cross markers show the
intermediate results and the final positions, respectively. The
localization errors are shown in Fig. 16b. It can be observed
that RWCS converges very fast, and returns almost the true
coordinates of the nodes in the noiseless ranging scenario.

8.4 VS. the State-of-the-Art Algorithms

The localization accuracy of the proposed scheme are com-
pared with: the state-of-the-art component stitching methods:
(1) WCS [46], (2) ARAP [20]; the state-of-the-art centralized
localizationmethods (3) SDP [18], (4) SMACOF [17].

Fig. 17 shows the distribution of localization error in differ-
ent parameters. The localization error of ARAP, SDP and
SMACOF are evaluated, which are compared with the pro-
posed scheme andWCS. It is shown that the proposed scheme
greatly outperforms other algorithms. This shows the effec-
tiveness of disambiguation through LFFC andCFFC.

8.4.1 The Cumulative Error Distribution

The cumulative distribution function (CDF) of the location
errors are counted to evaluate the performances of different

Fig. 13. Visualizing the separators and the localization result of WCS.

Fig. 14. Visualizing the resolved separators and the localization result of
the proposed schema.

Fig. 15. The localization error of the proposed schema, WCS and all fea-
sible realizations. ‘Interval of P’ is the line segment between the maxi-
mum and the minimal localization error for all feasible realizations in P.

Fig. 16. (a) Trajectories of the coordinate estimates. (b) Localization
errors w.r.t. the iteration count.
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algorithms. As shown in Fig. 18, we evaluate the location
errors under six different ranging radius settings, so that
the average node degree varies in f5; 6; 7; 8; 9; 10; 11; 12g
and s varies in f0; 2; 5g.

The CDFs of the location errors in two sparse network
settings when D ¼ 5 and D ¼ 7 are given in the first col-
umn, i.e., Figs. 18a, 18d, and 18g and the second column i.e.,
Figs. 18b, 18e, and 18h respectively. From the CDF curves, it
can be seen more clearly that the proposed algorithm pro-
vides the best accuracy under different noise levels in sparse
networks. The results show the importance of inferring neg-
ative edges to resolve flip ambiguities. The third column is
the average locating errors of different algorithms as a func-
tion of the average node degree. The average location errors
decrease as the network becomes less sparse (with higher

node degree). When the network becomes dense, i.e., when
D � 10, all the performances of the five algorithms become
rather well.

From the results, we can see SDP and SMACOF are more
sensitive to sparsity comparing with the component stitching
methods, such as ARAP, WCS and our proposed method.
Our proposed scheme provides the best accuracy under dif-
ferent sparsity and noise level settings.

8.4.2 Evaluation under Multiplicative Noise Model

We evaluate the impact of ranging noise of distance meas-
urements. In previous sections, it is assumed that di;j ¼
kpi � pjk2 þ si;j, where si;j 	 Nð0; s2Þ. We call it additive
noise . Another option for noise model is that larger noise

Fig. 17. The distribution of localization error of different algorithms.

Fig. 18. Comparing the localization performances of different algorithms in different ranging radius, and noise level settings.
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variances exist for longer measurements and smaller for
shorter measurements. Assume di;j ¼ ð1þ si;jÞkpi � pjk2,
where si;j 	 Nð0; s2Þ. Similarly, we call itmultiplicative noise.

Fig. 19 shows the impacts of the additive and multiplica-
tive noises. The CDFs of localization errors in a sparse net-
work where D ¼ 5 and s ¼ 2 are shown. From the CDF
curves and orange shaded-area, it can be observed that
multiplicative noise leads to less localization errors. The
green- and yellow-shaded regions show, respectively, 80 and
90 percent of all localization errors. Comparing the top 100,
90 and 80 percent errors, we can see that the average errors
under multiplicative noise are constantly smaller than errors
under additive noise . This also suggests that themultiplicative
noisemodel has less impact on localization accuracy.

8.5 The Localization Time Consumption

We conduct further experiments to compare the time con-
sumption of different algorithms under various parameter
settings. Table 5 shows that the proposed scheme conducts
efficient inference of negative edges and requires even shorter
running time than WCS. It is because that finding redundant
rigid components in WCS by bipartite matching and compo-
nent merging is time-consuming, while the proposed scheme
detects 3-connected components by SPQR tree is more effi-
cient. The other three algorithms are no doubt having better
efficiency at a cost of worse accuracy. Overall, the proposed
scheme provides an efficient and accurate state-of-the-art
approach for sparse network localization.

9 CONCLUSION

This paper investigates conditions on resolving flipping ambi-
guity in rigid graphs and proposes LFFC and CFFC to resolve
BFG-level and component-level ambiguity. A LFFC, CFFC and
RWCS synchronization routine is proposed, where an NC-Tree
structure is utilized throughout the scheme. LFFC needs only
neighborhood information, which can be easily adopted to

construct the NC-Tree. Then CFFC is applied on the NC-Tree
from bottom to top to conduct further disambiguation. The
final realization is obtained by Residual-based Weighted
Component Stitching (RWCS), where the influence of high-
quality local realizations are strengthened. Experiments have
verified the good efficiency and accuracy of the proposed
framework. In future work, the LFFC condition can be easily
adopted in distributed localization algorithms because it
needs only two-hop local information. The LFFC and CFFC
conditions also provide hints on the optimization of node
deployment and motion control of agents for better network
localization, whichwill be studied in futurework.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China Grant No. 61972404, 61672524,
11671400. The Fundamental Research Funds for the Central
University, and the Research Funds of Renmin University
of China, 2015030273.

REFERENCES

[1] Y. Wang, Y. Wu, and Y. Shen, “Cooperative tracking by multi-
agent systems using signals of opportunity,” IEEE Trans. Com-
mun., vol. 68, no. 1, pp. 93–105, Jan. 2020.

[2] R. Mendrzik, F. Meyer, G. Bauch, and M. Z. Win, “Enabling situa-
tional awareness in millimeter wave massiveMIMO systems,” IEEE
J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 1196–1211, Sep. 2019.

[3] H. Zhao, J. Wei, S. Huang, L. Zhou, and Q. Tang, “Regular topol-
ogy formation based on artificial forces for distributed mobile
robotic networks,” IEEE Trans. Mobile Comput., vol. 18, no. 10,
pp. 2415–2429, Oct. 2019.

[4] Y. Wang, T. Sun, G. Rao, and D. Li, “Formation tracking in sparse
airborne networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 9,
pp. 2000–2014, Sep. 2018.

[5] L. Cheng, Y. Li, M. Xue, and Y. Wang, “An indoor localization
algorithm based on modified joint probabilistic data association
for wireless sensor network,” IEEE Trans. Ind. Inform., early access,
Mar. 10, 2020, doi: 10.1109/TII.2020.2979690.

[6] S. Rai and S. Varma, “Localization in wireless sensor networks
using rigid graphs: A review,” Wireless Pers. Commun., vol. 96,
no. 3, pp. 4467–4484, 2017.

[7] M.Y.Arafat and S.Moh, “Localization and clusteringbasedon swarm
intelligence in UAV networks for emergency communications,” IEEE
Internet Things J., vol. 6, no. 5, pp. 8958–8976, Oct. 2019.

[8] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.

[9] M. Cucuringu, Y. Lipman, andA. Singer, “SensorNetwork Localiza-
tion by Eigenvector Synchronization over the euclidean Group,”
ACMTrans. Sen. Netw., vol. 8, no. 3, pp. 19:1–19:42, 2012.

[10] B. Jackson and J. Owen, “Equivalent realisations of a rigid graph,”
Discrete Appl. Math., vol. 256, pp. 42–58, 2019.

[11] D. K. Goldenberg et al., “Network localization in partially localiz-
able networks,” in Proc. 24th Annu. Joint Conf. IEEE Comput. Com-
mun. Societies, 2005, pp. 313–326.

[12] R. Connelly, T. Jord�an, and W. Whiteley, “Generic global rigidity of
body–bar frameworks,” J. Combinatorial Theory, Series B, vol. 103,
no. 6, pp. 689–705, 2013.

[13] Z. Yang and Y. Liu, “Understanding node localizability of wire-
less ad-hoc networks,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.

Fig. 19. CDF of localization errors. Shaded regions show the cumulative
distribution of the top 100, 90, and 80 percent localization errors of the
proposed schema, which are shown in orange, yellow, and green,
respectively.

TABLE 5
The Localization Time Consumption (s)

Parameter Setting Proposed WCS ARAP SDP SMACOF

D ¼ 5; s ¼ 2 11:82 38.51 4.71 1.61 0.39
D ¼ 5; s ¼ 5 8:42 38.24 3.17 1.82 0.46
D ¼ 7; s ¼ 2 11:27 72.56 5.46 1.73 0.38
D ¼ 7; s ¼ 5 6:89 61.96 2.83 1.70 0.39

PING ETAL.: FLIPPING FREE CONDITIONS AND THEIR APPLICATION IN SPARSE NETWORK LOCALIZATION 1001

Authorized licensed use limited to: Renmin University. Downloaded on June 02,2024 at 01:53:11 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TII.2020.2979690


[14] A. Savvides, C.-C.Han, andM.B. Strivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors,” in Proc. 7th Annu. Int.
Conf.Mobile Comput.Netw., 2001, pp. 166–179.

[15] H. Shen, Z. Ding, S. Dasgupta, and C. Zhao, “Multiple source local-
ization in wireless sensor networks based on time of arrival meas-
urement,” IEEE Trans. Signal Process., vol. 62, no. 8, pp. 1938–1949,
Apr. 2014.

[16] R. K€ummerle, G. Grisetti, H. Strasdat, K. Konolige, andW. Burgard,
“G2o: A general framework for graph optimization,” in Proc. IEEE
Int. Conf. Robot. Autom., 2011, pp. 3607–3613.

[17] S. Korkmaz and A.-J. van der Veen, “Robust localization in sensor
networkswith iterative majorization techniques,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2009, pp. 2049–2052.

[18] A. M.-C. So and Y. Ye, “Theory of semidefinite programming for
sensor network localization,” Math. Program., vol. 109, no. 2–3,
pp. 367–384, 2007.

[19] A. Saha and B. Sau, “Network localization by non-convex opti-
mization,” in Proc. 7th ACM Int. Workshop Mobility Interference
MiddleWare Manage. HetNets, 2017, pp. 1–6.

[20] L. Zhang, L. Liu, C. Gotsman, and S. J. Gortler, “An as-rigid-as-
possible approach to sensor network localization,” ACM Trans.
Sensor Netw., vol. 6, no. 4, 2010, Art. no. 35.

[21] B. Jackson and A. Nixon, “Stress matrices and global rigidity of
frameworks on surfaces,” Discrete Comput. Geometry, vol. 54, no. 3,
pp. 586–609, 2015.

[22] R. Connelly, “Generic global rigidity,” Discrete Comput. Geom.,
vol. 33, no. 4, pp. 549–563, 2005.

[23] J. Aspnes et al., “A theory of network localization,” IEEE Trans.
Mobile Comput., vol. 5, no. 12, pp. 1663–1678, Dec. 2006.

[24] Z. Yang, Y. Liu, and X. Y. Li, “Beyond trilateration: On the localiz-
ability of wireless ad-hoc networks,” in Proc. IEEE INFOCOM,
2009, pp. 2392–2400.

[25] D. J. Jacobs and B. Hendrickson, “An algorithm for two-
dimensional rigidity percolation: The pebble game,” J. Comput.
Phys., vol. 137, no. 2, pp. 346–365, 1997.

[26] S. J. Gortler, A. D. Healy, Dylan, and P. Thurston, “Characterizing
generic global rigidity,” Amer. J. Math., vol. 132, no. 4, pp. 897–939,
2010.

[27] D. Shamsi, N. Taheri, Z. Zhu, and Y. Ye, “Conditions for correct sen-
sor network localization using SDP relaxation,” in Discrete geometry
and optimization. Berlin, Germany: Springer, 2013, pp. 279–301.

[28] A. A. Kannan, B. Fidan, and G. Mao, “Analysis of flip ambiguities
for robust sensor network localization,” IEEE Trans. Veh. Technol.,
vol. 59, no. 4, pp. 2057–2070, May 2010.

[29] X. Wang, Z. Yang, J. Luo, and C. Shen, “Beyond rigidity: Obtain
localisability with noisy ranging measurement,” Int. J. Ad Hoc
Ubiquitous Comput., vol. 8, no. 1/2, pp. 114–124, 2011.

[30] W. Liu, E. Dong, Y. Song, and D. Zhang, “An improved flip ambi-
guity detection algorithm in wireless sensor networks node local-
ization,” in Proc. 21st Int. Conf. Telecommun., 2014, pp. 206–212.

[31] W. Liu, E. Dong, and Y. Song, “Analysis of flip ambiguity for
robust three-dimensional node localization in wireless sensor
networks,” J. Parallel Distrib. Comput., vol. 97, pp. 57–68, 2016.

[32] Q. Guo, Y. Zhang, J. Lloret, B. Kantarci, andW. K. G. Seah, “A locali-
zation method avoiding flip ambiguities for micro-UAVs with
bounded distancemeasurement errors,” IEEE Trans.Mobile Comput.,
vol. 18, no. 8, pp. 1718–1730, Aug. 2019.

[33] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed
network localization with noisy range measurements,” in Proc.
2nd Int. Conf. Embedded Netw. Sensor Syst., 2004, pp. 50–61.

[34] F. Sottile and M. A. Spirito, “Robust localization for wireless sen-
sor networks,” in Proc. 5th Annu. IEEE Commun. Soc. Conf. Sensor,
Mesh Ad Hoc Commun. Netw., 2008, pp. 46–54.

[35] H. Akcan and C. Evrendilek, “Reducing the number of flips in tri-
lateration with noisy range measurements,” in Proc. 12th Int. ACM
Workshop Data Eng. Wireless Mobile Acess, 2013, pp. 20–27.

[36] D. K. Goldenberg et al., “Localization in sparse networks using
sweeps,” in Proc. 12th Annu. Int. Conf. Mobile Comput. Netw., 2006,
pp. 110–121.

[37] G. Oliva, S. Panzieri, F. Pascucci, and R. Setola, “Sensor networks
localization: Extending trilateration via shadow edges,” IEEE
Trans. Autom. Control, vol. 60, no. 10, pp. 2752–2755, Oct. 2015.

[38] F. Wang, L. Qiu, and S. S. Lam, “Probabilistic region-based locali-
zation for wireless networks,” ACM SIGMOBILE Mobile Comput.
Commun. Rev., vol. 11, no. 1, pp. 3–14, 2007.

[39] S. Bai and H. Qi, “Tackling the flip ambiguity in wireless sensor
network localization and beyond,” Digit. Signal Process., vol. 55,
pp. 85–97, 2016.

[40] S. Severi, G. Abreu, G. Destino, and D. Dardari, “Understanding
and solving flip-ambiguity in network localization via semidefin-
ite programming,” in Proc. IEEE Global Telecommun. Conf., 2009,
pp. 1–6.

[41] X. Wang, Y. Liu, Z. Yang, K. Lu, and J. Luo, “OFA: An optimistic
approach to conquer flip ambiguity in network localization,” Com-
put. Net., vol. 57, no. 6, pp. 1529–1544, 2013.

[42] X. Shi, G. Mao, B. D. O. Anderson, Z. Yang, and J. Chen, “Robust
localization using rangemeasurementswith unknown and bounded
errors,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 4065–4078,
Jun. 2017.

[43] F. Xiao,W. Liu, Z. Li, L. Chen, andR.Wang, “Noise-tolerantwireless
sensor networks localization via multinorms regularized matrix
completion,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2409–2419,
Mar. 2018.

[44] X. Wang, Y. Liu, Z. Yang, J. Liu, and J. Luo, “ETOC: Obtaining
robustness in component-based localization,” in Proc. 18th IEEE
Int. Conf. Netw. Protocols, 2010, pp. 62–71.

[45] X. Wang, J. Luo, Y. Liu, S. Li, and D. Dong, “Component-based
localization in sparse wireless networks,” IEEE/ACM Trans. Netw.,
vol. 19, no. 2, pp. 540–548, Apr. 2011.

[46] T. Sun, Y. Wang, D. Li, Z. Gu, and J. Xu, “WCS: Weighted compo-
nent stitching for sparse network localization,” IEEE/ACM Trans.
Netw., vol. 26, no. 5, pp. 2242–2253, Oct. 2018.

[47] U. A. Khan, S. Kar, and J. M. F. Moura, “Linear theory for self-
localization: Convexity, barycentric coordinates, and cayley–
menger determinants,” IEEE Access, vol. 3, pp. 1326–1339, 2015.

[48] S. Safavi, U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed locali-
zation: A linear theory,” Proc. IEEE, vol. 106, no. 7, pp. 1204–1223,
Jul. 2018.

[49] U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed sensor locali-
zation in random environments using minimal number of anchor
nodes,” IEEE Trans. Signal Process., vol. 57, no. 5, pp. 2000–2016,
May 2009.

[50] U. A. Khan, S. Kar, and J. M. F. Moura, “DILAND: An algorithm for
distributed sensor localization with noisy distance measurements,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1940–1947,Mar. 2010.

[51] Y. Diao, Z. Lin, and M. Fu, “A barycentric coordinate based dis-
tributed localization algorithm for sensor networks,” IEEE Trans.
Signal Process., vol. 62, no. 18, pp. 4760–4771, Sep. 2014.

[52] P. P. V. Tecchio, “Range-only node localization: The arbitrary
anchor case in d-dimensions,” Publicly Accessible Penn Disserta-
tions, no. 3519, 2019.

[53] M. Z. Win et al., “Network localization and navigation via coopera-
tion,” IEEECommun.Magazine, vol. 49, no. 5, pp. 56–62,May 2011.

[54] M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti,
“Efficient multisensor localization for the internet of things:
Exploring a new class of scalable localization algorithms,” IEEE
Signal Process. Magazine, vol. 35, no. 5, pp. 153–167, Sep. 2018.

[55] R. M. Buehrer, H. Wymeersch, and R. M. Vaghefi, “Collaborative
sensor network localization: Algorithms and practical issues,”
Proc. IEEE, vol. 106, no. 6, pp. 1089–1114, Jun. 2018.

[56] M. Z. Win, Y. Shen, and W. Dai, “A theoretical foundation of
network localization and navigation,” Proc. IEEE, vol. 106, no. 7,
pp. 1136–1165, Jul. 2018.

[57] M. Z. Win, W. Dai, Y. Shen, G. Chrisikos, and H. V. Poor,
“Network operation strategies for efficient localization and navi-
gation,” Proc. IEEE, vol. 106, no. 7, pp. 1224–1254, Jul. 2018.

[58] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Peregrine:
Network localization and navigation with scalable inference and
efficient operation,” 2020, arXiv: 2001.11494.

[59] A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win,
“Soft information for localization-of-things,” Proc. IEEE, vol. 107,
no. 11, pp. 2240–2264, Nov. 2019.

[60] S. Mazuelas, A. Conti, J. C. Allen, and M. Z. Win, “Soft range
information for network localization,” IEEE Trans. Signal Process.,
vol. 66, no. 12, pp. 3155–3168, Jun. 2018.

[61] S. Bartoletti, W. Dai, A. Conti, and M. Z. Win, “A mathematical
model for wideband ranging,” IEEE J. Sel. Topics Signal Process.,
vol. 9, no. 2, pp. 216–228, Mar. 2015.

[62] B. Jackson, “Notes on the rigidity of graphs,” in Proc. Levico Conf.
Notes, 2007, vol. 4. [Online]. Available: www.science.unitn.it/
cirm/JacksonLectures.pdf

[63] C. Gutwenger and P. Mutzel, “A linear time implementation of
spqr-trees,” in Proc. Int. Symp. Graph Drawing, 2000, pp. 77–90.

[64] R. Sanyal, M. Jaiswal, and K. N. Chaudhury, “On a registration-
based approach to sensor network localization,” IEEE Trans.
Signal Process., vol. 65, no. 20, pp. 5357–5367, Oct. 2017.

1002 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: Renmin University. Downloaded on June 02,2024 at 01:53:11 UTC from IEEE Xplore.  Restrictions apply. 

www.science.unitn.it/cirm/JacksonLectures.pdf
www.science.unitn.it/cirm/JacksonLectures.pdf


[65] P. J. Besl and N. D. McKay, “A method for registration of 3-D
shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2,
pp. 239–256, Feb. 1992.

[66] P. Besl and N. D.McKay, “Amethod for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[67] K.-P. Vo, “Finding triconnected components of graphs,” Linear
Multilinear Algebra, vol. 13, no. 2, pp. 143–165, 1983.

Haodi Ping received the BS and MS degrees
from the Department of Computer Science and
Technology, China University of Geosciences Bei-
jing, in 2015 and 2018, respectively. He is cur-
rently working toward the PhD degree in the
Department of Computer Sciences, Renmin Uni-
versity of China. His research interests include
network localization algorithms, and graph opti-
mization and applications.

Yongcai Wang received the BS and PhD
degrees from the Department of Automation Sci-
ences and Engineering, Tsinghua University, in
2001 and 2006, respectively. He worked as asso-
ciated researcher with NEC Labs. China from
2007-2009. He was an research scientist with the
Institute for Interdisciplinary Information Sciences
(IIIS), Tsinghua University from 2009-2015. He
was a visiting scholar with Cornell University in
2015. He is currently an associate professor at
the Department of Computer Sciences, Renmin

University of China. His research interests include network localization,
and combinatorial optimization and applications.

Deying Li received the MS degree in mathemat-
ics from Huazhong Normal University, in 1988,
and the PhD degree in computer science from
the City University of Hong Kong, in 2004. She is
currently a professor at the Department of Com-
puter Science, Renmin University of China. Her
research interests include wireless networks,
mobile computing, social network, and algorithm
design and analysis.

Tianyuan Sun received the BS and MS degrees
from the Department of Computer Sciences,
Renmin University of China, in 2015 and 2018,
respectively. He is currently a research engineer
with the HTC Research Beijng, China. His
research interests include network localization
algorithms, vision based perception algorithms
for robot and virtual reality.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PING ETAL.: FLIPPING FREE CONDITIONS AND THEIR APPLICATION IN SPARSE NETWORK LOCALIZATION 1003

Authorized licensed use limited to: Renmin University. Downloaded on June 02,2024 at 01:53:11 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


