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Abstract— The barycentric linear localization (BLL) methods
provide a lightweight, distributed way to calculate locations for
resource-limited IoT devices. A crucial requirement for BLL is
that the nodes participating in the iterative location propagation
are localizable. Otherwise, the unlocalizable nodes will continu-
ously pose error information in the location propagation process,
making even the theoretically localizable nodes converge to the
wrong locations. However, the research on node localizability
in BLL is much lacked, greatly limiting the application scope
of BLL. In specific, BLL node localizability is detected on a
generated graph GA . For any node, its neighbors appear in GA

only when the neighbors can form triangle(s), so that GA is
much sparser than the original G. Thus, the node localizability
condition in BLL is harder to be satisfied than that in traditional
localization methods. Moreover, the distributed algorithm to
detect BLL localizable nodes is still open. This paper thoroughly
investigates the node localizability conditions and distributed
localizable node detection algorithms in BLL. At first, an efficient
and fully distributed Negative Edge Inference (NEI) algorithm
is proposed for each node to infer implicit edges in its neigh-
borhood. NEI strengthens the distance graph by revealing more
distance constraints so that enables more neighboring triangles.
Then a new sufficient condition, i.e., the recursive three disjoint
path condition (Recursive-3DP) on the strengthened distance
graph is proposed to identify BLL localizable nodes much
more accurately. Secondly, a distributed Path Extension and
Pruning (PEP) algorithm is proposed for distributed localizable
node detection. PEP is proved to detect all the theoretically
Recursive-3DP nodes in the strengthened distance graph. A Fast-
PEP algorithm is further proposed, which misses very limited
Recursive-3DP nodes while bringing significant improvement in
efficiency. PEP and Fast-PEP guarantee to identify BLL localiz-
able nodes in 2H rounds, where H is the maximum hop number
of the node disjoint paths. Finally, by using NEI and PEP (Fast-
PEP), a localizability-aware BLL (LABEL) method is proposed,
which correctly identifies localizable nodes and guarantees their
correct location convergence. Extensive analysis and experiments
show the advantages in localizability and location accuracy of the
proposed schemes over the state-of-the-art methods.

Index Terms— Barycentric coordinate, distributed localization,
node localizability condition, distributed localizability detection.
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I. INTRODUCTION

THE recent advances in wireless ranging techniques such
as received signal strength [1], [2], WiFi RTT [3], [4],

UWB [5], [6], and LoRa RTT [7] are promoting the devel-
opment of ranging-based localization techniques [8]. For
example, during the COVID-19 pandemic, the UWB ranging
technique has been adopted for social distancing and contact
tracing [9]. The UWB modules can also be found in the latest
smartphones, smartwatches, and IoT devices [10], implying
the broad application prospects of the ranging technique for
location-based services.

In ranging-based localization, a certain number of objects
with known locations are called anchors. The objects whose
locations are unknown are called agents. Localization is to
calculate the agent locations based on inter-agent and agent-
anchor distance measurements, and anchor locations. Regard-
ing where the locations are inferred, ranging-based localization
methods are roughly categorized into two categories: central-
ized and distributed.

The centralized ranging-based localization algorithms can
be further divided into: 1) optimization-based, including multi-
dimensional scaling (MDS) [11], [12], general graph opti-
mization (G2O) [13], [14], semidefinite programming (SDP)
[15]; 2) probabilistic-based, [16], [17], [18], [19], [20];
3) geometric-based [21], [22], [23]; and 4) component stitch-
ing [24], [25], [26], [27], [28], etc. A common limitation of
centralized localization methods is the cost and latency for col-
lecting ranging data to a central processor. The optimization-
based algorithms further require proper initialization to avoid
being trapped into local optima.

Distributed localization methods involve only local com-
munication and local computation at each agent, which can
be broadly divided into sequential algorithms and concur-
rent algorithms regarding the sequence of location updating.
In sequential algorithms [29], [30], [31], [32], [33], [34], [35],
[36], each agent determines its location w.r.t. location-known
neighbors starting from the anchors. They typically require
three anchors to have common neighbors for starting the
trilateration. Concurrent algorithms [37], [38], [39], [40], [41]
update the location estimations concurrently based on distance
measurements and latest estimated locations of neighbors.

In the distributed and concurrent localization branch,
recently, a Barycentric coordinate-based Linear Localization
(BLL) schema has drawn great attention [42], [43], [44], [45],
[46], [47], [48], [49], [50]. Through an efficient reparame-
trization with barycentric coordinates, the localization problem
is reduced to distributed linear location updating at each
node by a linear function of neighbors’ location estimations.
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The overall localization updating of all nodes becomes a
large linear system. So the concurrent location evolvement
inherits the property of the iterative linear system, including
convergence and solution uniqueness, when the system matrix
satisfies the convergence conditions [42], [43], [46]. The BLL
methods are attractive for having the following properties.
1) It is fully distributed and concurrent; 2) It does not require
good initialization of the agent locations; 3) It works with
the minimal number of anchors (not less than d + 1 in �d)
and does not require special anchor distribution (such as
anchors forming triangles); 4) It is highly efficient for each
agent to update only a local linear equation. Moreover, the
convergence of BLL has been certified against noisy distance
measurements, communication link failures, and communica-
tion channel noise [42], [44].

Despite the above benefits, we observe that a key drawback
of BLL is that it works properly only when all the nodes
participate in the location iteration are localizable (or equiva-
lently, the linear system is nonsingular) [46]. We show that if
the unlocalizable nodes are included in the iterative updating
process, even the locations of the localizable nodes may
converge to wrong locations. In ranging-based localization,
a network is localizable [29] if the locations of all the nodes
can be uniquely determined by respecting the constraints of
the measured distances and anchor locations. A specific node
is localizable [51] if its location can be uniquely determined
by respecting the constraints. The existence of unlocalizable
nodes has been verified to be very general in practical appli-
cations such as in OceanSense [52] and GreenOrbs [53].
This motivates the following question: In the commonly seen
unlocalizable networks, how to ensure only the BLL localiz-
able nodes participating in the BLL iteration, so the nodes’
locations can converge correctly.

Identifying whether a network/node is localizable is called
the network/node localizability problem. There exist a series
of studies, including the network localizability conditions [29]
and detection algorithms [54]; the node localizability con-
ditions [51] and localizable node detection algorithms [29],
[55], [56]. However, the above localizability conditions and
algorithms are found to be no longer applicable in BLL.

To distinguish related studies, we define the concept of raw
ranging-based localizability (RRL). The RRL localizability
refers to localizability studies using the edges (ranging infor-
mation) in the original distance graph. Meanwhile, the term
BLL localizability is defined as referring to the localizability
problem in the BLL schema. BLL localizability depends on
a generated graph [46] associated with the barycentric coor-
dinate representation. It is generally sparser than the original
distance graph, which will be detailed in Section II. To find the
BLL localizable nodes, existing work is very limited. To the
best of our knowledge, there is only a sufficient condition
called recursive-3DP and a centralized detection algorithm
called iterative max-flow (IMF) [57]. But the recursive-3DP
condition may miss many localizable nodes, which will be
detailed in Section III. The IMF algorithm is centralized,
which is not suitable for distributed localizable node detection
as BLL requires.

Without distributed localizable node detection methods,
existing BLL algorithms impose different restrictions for cor-
rect localization. DILOC [42] and its variants [43], [47] require
that all agents are within the convex hull of anchors and
each agent is within the convex hull of neighbors. If there
is not such a convex hull, an agent is allowed to increase its

ranging scope. ECHO [46] assumes that the whole network is
localizable to make the system nonsingular.

This paper investigates distributed conditions and algorithms
to identify BLL localizable nodes, so as to select only localiz-
able nodes in local updating to exclude the impact of unlocal-
izable nodes. It firstly shows that knowing the implicit edges in
the neighborhood is crucial for accurate localizability detection
in BLL. An efficient and distributed negative edge inference
(NEI) scheme is proposed to reveal true neighborhood distance
constraints. A new node localizability detection condition is
proposed for BLL. Then, a distributed path extension and
pruning (PEP) algorithm is presented, which is shown to
have the same localizable node detection performance as
the centralized IMF algorithm. The key contributions are as
follows:

• The issues of BLL localization are firstly investigated:
(1) we show when some unlocalizable nodes participate
in the BLL iteration, even the localizable nodes may
converge to wrong locations. (2) The importance of
implicit edge to BLL localizability detection is illustrated.
(3) The RRL node localizability detection algorithms are
shown to fail to detect some BLL localizable nodes and
they require special anchor distribution to launch.

• A distributed negative edge inference (NEI) algorithm
is proposed to infer the implicit edges (the unmeasured
edges with unique length) in each node’s neighborhood.
NEI is highly efficient and uses only one-hop neighbor-
hood distance information.

• Based on the information proved by NEI, a new suffi-
cient condition, i.e., Recursive-3DP on the strengthened
distance graph is proposed for BLL node localizability
detection. It detects much more BLL localizable nodes
than the condition without using NEI.

• A distributed path extension and pruning (PEP) algorithm
is designed for detecting BLL localizable nodes distrib-
utively. It does not need special anchor distribution and
theoretically guarantees to detect all the Recursive-3DP
nodes in the strengthened graph.

• A Fast-PEP algorithm is also proposed to detect disjoint
paths using the shortest paths. It greatly improves effi-
ciency while preserving the detection capability. Experi-
ments show that Fast-PEP miss very limited number of
Recursive-3DP nodes than PEP.

• Then a Localizability Aware Barycentric linEar Local-
ization framework (LABEL) is proposed, in which each
node runs NEI and PEP (Fast-PEP) to select localizable
neighbors to form the distributed linear equation. LABEL
can guarantee the correct location convergence. Benefited
by PEP and NEI, it discovers and correctly localizes much
more localizable nodes than existing methods and thus
improves the application scope of BLL algorithms.

The rest of the paper is organized as follows. Preliminary
and related works are introduced in Section II. The key
observations are presented in Section III. NEI is presented
in Section IV. PEP and Fast-PEP are presented in Section V.
Evaluations through both real and simulated experiments are
presented in Section VI. The paper is concluded with a
discussion of future work in Section VII.

II. PRELIMINARIES AND RELATED WORK

Let the terminology “node” refer to both the agents and
anchors. For a network of m+n nodes in �dim, let V = A∪S
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denote the node set. This paper is presented for dim = 2,
whose idea can be further extended to dim = 3. We assume
{v1, · · · , vm} ∈ A are anchors, whose locations PA =
[p1 · · · pm]T are known. The nodes {vm+1, · · · , vm+n} ∈ S
are agents, whose locations PS = [pm+1 · · · pm+n]T are
to be determined. Let R be the ranging radius, the inter-node
distance dij can be measured and (i, j) ∈ E if ||pi−pj ||2 ≤ R.
The anchors, agents, and inter-node distance measurements
can be represented by a distance graph G = (V , E ,d). Ni

represents the neighbors of vi in G, vj ∈ Ni if (i, j) ∈ E .
The ranging-based localization problem is to calculate PS by
anchor locations PA and the inter-node distances d.

A. Ranging-Based Localization and Localizability

We firstly introduce different categories of ranging-based
localization algorithms. Then we introduce the localizability
results in ranging-based localization.

1) Ranging-Based Localization Algorithms: Ranging-based
localization algorithms can be divided into centralized and
distributed two categories. Representative centralized localiza-
tion algorithms include (1) optimization-based methods [11],
[12], [13], [14], [15], where a quadratic least-squares objective
function is adopted; (2) probabilistic based algorithms, where
the measurement data is characterized by a statistical model
[16], [17], [18], [19], [20]; (3) geometric-based methods where
the noise and ambiguity issues are discussed from the network
geometry perspective [21], [22], [23]; and (4) component
stitching methods [24], [25], [26], [27], [28] that divide the
network into sub-structures and merge the local results, etc.
Centralized algorithms need high communication costs and
latency for data collection, and optimization-based methods
generally face the trouble of local optima due to the non-
convexity of the resulting optimization problem.

Distributed localization methods can be broadly categorized
into sequential and concurrent two categories. The represen-
tative sequential method is trilateration [29]. When an agent
has at least three location-known neighbors, it calculates its
location by trilateration. Then, it serves as new location-known
node to help localize other agents. To make trilateration more
robust, robust quadrilateral [30] and safe triangles [31] are pro-
posed to prune unreliable distance measurements. Another idea
is to import redundancy, i.e., using multilateration to improve
accuracy [32], [33], [34]. Another direction is to expand
trilateration in sparse networks. Biliteration [35] and shadow
edge [36] methods are proposed. The idea of trilateration also
finds applicability in ranging-free localization methods [58],
[59], [60], [61], where the main difference is that the agent-
to-anchor distance is obtained by the estimated average hop
distance and hop count. In overall, sequential methods are
easy to carry out. But they require the anchors to be densely
deployed to start trilateration. Moreover, the sequential manner
inevitably faces the location error accumulation problem.

In concurrent distributed methods [37], [38], [39], [40], [41],
each agent starts with an initial location estimation and
then updates its location using distance measurements to its
neighbors and the neighbors’ estimated locations. The process
iterates until the estimations converge. In [38], each node
repeatedly and concurrently receives distances and locations
from neighbors and calculates a local coordinate system with
a random orientation relative to the global coordinate system.
Two distributed expectation-conditional maximization (ECM)
algorithms have been designed using the idea of average

consensus in [39]. A distributed algorithm for least square
localization has also been proposed in [40]. BLL is also in the
distributed and concurrent branch, which will be introduced
separately in Section II-B.

More detailed survey of localization algorithms with various
taxonomies can be found in [47], [62], [63], [64], and [65],
and references therein.

2) RRL Localizability: We refer to the localizability studies
using edge information in the original graph as RRL localiz-
ability. A network is RRL localizable if all the node locations
in the network can be uniquely determined by respecting the
distance measurements and the anchor locations. A node is
RRL localizable if its location can be uniquely determined by
the distance and anchor constraints.
• RRL Network Localizability Theories and Algorithms.

RRL network localizability is generally characterized by the
graph’s global rigidity property. In �2, G is global rigid
if and only if it is 3-connected and redundantly rigid [66].
RRL Network localizability detection algorithms return a yes-
or-no answer for a given network. A polynomial algorithm
has been designed by checking 3-connectivity and redundant
rigidity [54].
• RRL Node Localizability Theories and Algorithms.

To characterize node localizability, even in �2, the necessary
and sufficient condition remains unsolved. For necessary con-
dition, a localizable node needs at least three node disjoint
paths to anchors, called 3P condition [67]. Combining 3P and
redundant rigidity (the node is in a redundantly rigid com-
ponent with at least 3 anchors), another necessary condition
called RR-3P is proposed in [51]. For sufficient condition, if a
node belongs to a redundantly rigid component and it has three
vertex disjoint paths to three anchor nodes, the node is RRL
localizable, which is called RR3P condition [51]. Existing
node localizability detection algorithms are mainly designed
based on sufficient conditions.

The network flow and the pebble game algorithm [68] are
combined to detect localizable nodes based on RR3P in a
centralized manner. Distributed algorithms for localizable node
detection have also been proposed, including Trilateration
Protocol (TP) [29], Wheel Extension (WE) [55], and Triangle
Extension (TE) [56]. But these detection algorithms are based
on sufficient conditions, they may still miss to detect some
localizable nodes [56].

B. Barycentric Coordinate-Based Linear Localization (BLL)
and BLL Localizability

1) BLL Algorithms: • Construction of Linear System. For
each agent, its location can be expressed as a linear function
of neighbors’ locations through the barycentric coordinate
introduced by Möbius [69]. For an agent vi, its function is:

pi = aijpj + aikpk + ailpl, (1)

where {aij , aik, ail} are the barycentric coordinates of vi

with respect to neighbors vj , vk , and vl. In the seminal work
of BLL, i.e., DILOC [42] and its variants [43], [47], vi is
required to locate inside the triangle formed by vj , vk, and vl.
Consequently, the barycentric coordinates are always positive.
To compute the barycentric coordinates with the neighbors
that do not enclose vi, Diao et al. [46] designed a com-
plex geometric approach by determining the relative position
between vi and neighbors; Some work resorts to RRL meth-
ods in neighborhood to calculate barycentric coordinates
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TABLE I

REPRESENTATIVE RANGING-BASED LOCALIZATION METHODS

indirectly [48], [49]; Recently, Tecchio et al. [50] introduced
a direct and efficient calculation approach. For any three
neighbors {vj , vk, vl}, the coefficients are:
⎧⎨
⎩

aij = D(vj , vk, vl; vi, vk, vl)/D(vj , vk, vl; vj , vk, vl),
aik = D(vj , vk, vl; vj , vi, vl)/D(vj , vk, vl; vj , vk, vl),
ail = D(vj , vk, vl; vj , vk, vi)/D(vj , vk, vl; vj , vk, vl).

(2)

where D(·) is the Cayley-Menger bideterminant [70]. It takes
the distances between two node sets with equal cardinality as
input and outputs a signed scalar.

D(s1, · · · , sk; t1, · · · , tk)

= 2(−1
2
)k

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 d2

s1,t1 d2
s1,t2 · · · d2

s1,tk

1 d2
s2,t1 d2

s2,t2 · · · d2
s2,tk

...
...

...
. . .

...
1 d2

sk,t1 d2
sk,t2 · · · d2

sk,tk

∣∣∣∣∣∣∣∣∣∣∣
, (3)

where dsi,ti means the distance between node si and node si.
It can be seen that the three neighbors are required to be
mutually connected (i.e., forming a triangle) to calculate (3).
Let Θ denote three mutually connected neighbors. By per-
mutation, vi can construct a set {Θ1, · · · , ΘM} where M
is the number of triangles formed by neighbors. Then, the
barycentric coordinate representation becomes:

pi =
1
M

M∑
k=1

∑
j∈Θk

aijpj , (4)

where the barycentric coordinates are calculated as in (2).
Using the barycentric representations (4), from the system

point of view, a linear system can be constructed. In a
matrix–vector notation, the linear system is:[

PA
PS

]
=

[
I 0
B C

] [
PA
PS

]
. (5)

Let A =
[

I 0
B C

]
∈ R

(m+n)×(m+n). The ith row of A is

the barycentric coordinate of vi w.r.t. its neighbors. So the
localization problem is transformed to the linear system:

(I−C)PS = BPA. (6)

where (I −C) is called the coefficient matrix. Based on the
linear system, a generated graph of G is defined.

Definition 1 (The Generated Graph of G): Given
G = (V , E) and the matrix A constructed by (1)-(5) using
neighbor triangle permutation and barycentric coordinates,
the generated graph GA = (V , EA) is defined as a graph
with the same V and (i, j) ∈ EA if A(i,j) �= 0.

The neighbors of vi in GA are called barycentric neighbors,
denoted by NA

i . vj ∈ NA
i if (i, j) ∈ EA.

• Distributed Linear Iteration. After constructing the
linear system locally, each node vi ∈ S updates pi in an
iterative updation and propagation manner. Let p̂i represent
the estimated location of vi. For example, ECHO [46] adopts
the Richardson iteration to update p̂i with the help of an
intermediate variable:⎧⎨

⎩
ηi(t) = p̂i(t)−

∑
vj∈NA

i

aij p̂j(t),

p̂i(t + 1) = p̂i(t)− εηi(t) + ε
∑

vj∈NA
i

ajiηj(t),
(7)

where aij is the barycentric coordinate of vi w.r.t. vj and ε is a
precalculated scalar to control convergence. Other distributed
updating algorithms include distributed gradient descent [70],
distributed conjugate residual [71], and distributed conjugate
gradient (DCG) [72], etc. Note that such solvers in BLL
are independent to the initialization p̂i(0). Moreover, BLL in
noisy environments [44], [50], dynamic networks [73], and 3D
spaces [49] have also been explored. A survey about BLL can
be seen in [64].

It can be observed that the routine of BLL involves only
neighborhood information and local concurrent calculation for
each node. If the linear system is non-singular, the locations
of agents will converge under any initialization.

2) BLL Localizability: • BLL Network Localizability
Theory and Algorithm. BLL localizability is characterized
by the generated graph GA.

Lemma 1 (BLL Network Localizability Condition [46]):
In BLL algorithms, all nodes in a graph G are localizable
in �2 if and only if every node can find at least three node-
disjoint paths to anchors through only edges in GA generated
from A. Or equivalently, I−C constructed from (1)- (6) is
non-singular.

For BLL network localizability, our early work presented a
flow-based algorithm to test whether Lemma 1 is satisfied [57]
for judging whether a network is BLL localizable.
• BLL Node Localizability Theory and Algorithm. The

necessary BLL node localizable condition requires the node to
have at least 3 mutually connected neighbors. The sufficient
BLL node localizability condition was firstly given in [57],
which is called Recursive-3DP.

Lemma 2 (Sufficient BLL Node Localizability Condition
(Recursive-3DP) [57]): In a graph G = {V, E} in �2, suppose
GA is obtained through neighbor triangle permutation. If 1)
vi has three node disjoint paths to anchors in GA, and 2)
nodes on the disjoint paths all have three node disjoint paths
to anchors in GA, then, node vi is BLL localizable in G.

An Iterative Max-Flow (IMF) algorithm for detecting BLL
localizable nodes has been proposed in [57]. But IMF is
centralized, which cannot be run-timely used by BLL which
requires distributed localizable node detection algorithm.

Table I summarizes the representative centralized and dis-
tributed ranging-based algorithms. A summary of the localiz-
ability conditions, the centralized and distributed localizability
detection algorithms for RRL and BLL are given in Table II.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Renmin University. Downloaded on December 29,2022 at 02:18:47 UTC from IEEE Xplore.  Restrictions apply. 



PING et al.: UNDERSTANDING NODE LOCALIZABILITY IN BLL 5

TABLE II

REPRESENTATIVE WORK ABOUT LOCALIZABILITY IN DISTANCE GRAPHS. ×: UNSOLVED

Fig. 1. The locations calculated by ECHO in a network consisting BLL
unlocalizable nodes. (a) The graph topology. (b) The evolution of localization
error w.r.t. iteration rounds.

Although BLL is attractive for the four properties mentioned
in Section I, the research about BLL node localizability is
deficient, which will be addressed in this paper.

III. KEY OBSERVATIONS

Why BLL node localizability is crucial is explained by
showing the impact of unlocalizable nodes in BLL. Then
two key difficulties for BLL localizable node detection are
illustrated.

A. The Impact of Unlocalizable Nodes in BLL

In existing BLL methods, an implicit requirement is the
nodes participating in location iteration are BLL localizable.
But in practical applications, it is generally inevitable that
some nodes are unlocalizable, especially in sparse networks.
If we do not follow the restricts in DILOC [42] and its
variants [43], [47] that all nodes locating inside a convex hull
composed of anchors, and do not follow the assumption in
ECHO that all nodes are localizable, let’s check what will
happen. We show that the unlocalizable nodes will damage the
localization correctness of the localizable nodes. To proceed,
the concept of correct convergence is clarified.

Definition 2 (Correct Convergence): In a generic network
running BLL algorithms, a node vi’s location p̂i converges
correctly, if ∀ε > 0, ∃ a time τ , such that ||p̂i(t)− pi||2 ≤ ε
for all t ≥ τ .

It means the node’s calculated location p̂i converges towards
its true location pi as time passing. A network consisting
unlocalizable nodes is shown in Fig. 1(a), where {v1, v2, v3}
are anchors. Using the IMF algorithm, {v4, v5} are BLL
localizable while {v6, · · · , v12} are BLL unlocalizable. Let
||p̂i(t)−pi||2 denote the localization error at the tth iteration.
Fig. 1(b) shows the localization error evolution of each vi

when the BLL algorithm ECHO is adopted. Each p̂i is
initialized from p̂i(0) = [0, 0]. Let S∗ represent the BLL
localizable nodes. It can be seen that even the BLL localizable
nodes P̂S∗ cannot converge to their true locations after even
108 iterations.

Fig. 2. A wheel extension graph and its GA.

The reason is that the unlocalizable nodes v6 to v12 do not
have enough constraints to converge to correct locations. But
they continuously broadcast their wrong locations to impact
neighbors’ location updates. This makes even the theoretically
localizable nodes cannot converge correctly.

So it is critical for each node to identify its own and
its neighbors’ BLL localizability. Only localizable nodes
should select localizable neighbors to construct the linear
model. However, the localizable node detection theories and
algorithms are lacking in BLL. We next explain the main
theoretical and algorithmic difficulties, respectively.

B. Requiring Stronger Neighborhood Connectivity
Since the necessary and sufficient condition for node local-

izability is unsolved, existing identification methods are all
based on sufficient conditions. Thus, it is inevitable that some
truly localizable nodes will be wrongly characterized as unlo-
calizable by sufficient conditions. This problem is especially
serious in BLL localizable node detection. An example is
shown in Fig. 2, where nodes {3, 6, 10} are anchors. Since
the graph is a wheel extension graph, all agents are RRL
localizable [55]. But in BLL, no node can find three mutually
connected neighbors when constructing GA. Then, A is an
all-zero matrix and EA = ∅. Thus, no node is BLL localizable
using Recursive-3DP.

The key problem is that the BLL node localizability
requires more edges in each node’s neighborhood. The lack
of edges leads to an inability to compute the Cayley-Menger
bi-determinant when a node has not three mutually connected
neighbors. Thus, the localizable nodes are wrongly marked as
unlocalizable.

In distance graphs, although some edges cannot be directly
measured, many of them are “implicitly” existing. In specific,
when (vi, vj) /∈ E (i.e., ||pi −pj ||2 > R), there is an implicit
edge between vi and vj if the possible distance between them
is unique. Yang et al. [51] provided a way to infer some
of the implicit edges based on graph partition. If E can be
partitioned into two parts, and vi and vj are constrained in a
rigid component in each partition, then (vi, vj) is implicit. The
implicit edges are added into G to form an extended graph GI

before counting localizable nodes through RR3P. With these
implicit knowledge, the RRL localizable nodes can be more
accurately detected.

However, Yang’s method needs graph-level information.
Whereas in BLL, each node knows only connectivity among
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Fig. 3. A wheel extension graph after NEI and its new generated graph. The
blue dotted lines represent edges inferred by NEI.

neighbors and the BLL localizability also depends on the
neighborhood connectivity. Further, the partition-based method
misses many implicit edges, e.g., (v2, v4) in Fig. 2(a). We can-
not find a partition of edges such that v2 and v4 are in rigid
components in each partition, but (v2, v4) is actually implicit
since its length can be uniquely determined.

This motivates the design of a fully distributed approach
to infer implicit connectivity among neighbors, which is
called Negative Edge Inference (NEI) and will be detailed in
Section IV. Then, a strengthened distance graph is defined.

Definition 3 (Strengthened Distance Graph): For a distance
graph G = {V , E}, its corresponding strengthened distance
graph is G+ = {V , E+}, where E+ is the union of E and
the implicit edges added by NEI.

Given G = {V , E} with at least 3 anchors in �2, a new
sufficient BLL node localizability condition is proposed based
on G+ and its corresponding generated graph GA+.

Theorem 1 (Recursive-3DP in GA+): If 1) a node vi has
3 node disjoint paths (3DP) to anchors in GA+, and 2) the
nodes on the three disjoint paths to anchors all have 3DP to
anchors in GA+. Then, vi is BLL localizable in G.

Proof: In G+, more edges with unique lengths are
involved. If both 1) and 2) are satisfied, the graph induced by
vi and the nodes it passes by on its paths from GA+ satisfies
Lemma 1. Then all these nodes are BLL localizable. �

Fig. 3(a) shows the G+ of Fig. 2(a), where the dashed lines
are the implicit edges inferred by NEI. Then the generated
graph GA+ in BLL is shown in Fig. 3(b). It can be verified
that all nodes become BLL localizable using Recursive-3DP in
GA+. Comparing with Recursive-3DP in G, NEI helps to find
much more theoretically BLL localizable nodes. A necessary
condition for BLL node localizability detection is proposed
based on the property of G+.

Theorem 2 (Mutually Connected 3 Neighbors (MC3N) in
G+): If a node is BLL localizable in G, it has at least
3 mutually-connected neighbors in G+.

Proof: From (1)-(3), the construction of the BLL model
is based on Cayley-Menger bideterminant, where the distance
between each pair of nodes from the input {v1, · · · , vk} is
involved. If a node is BLL localizable, it must have at least
3 mutually-connected neighbors in G+, otherwise the linear
equation for location updating cannot be set up. �

Thus theoretically, if a node meets the Recursive-3DP in
GA+, it is BLL localizable. If a node does not meet the MC3N
condition, it is BLL unlocalizable.

Please also note that in Fig. 2(a), the three anchors
don’t have common neighbors, so trilateration cannot startup
although all nodes are RRL localizable. BLL does not require
special anchor distribution to launch.

C. Limitations in Distributed BLL Node Localizability
Detection Algorithms

Distributed RRL localizable node detection algorithms,
including TP [29], WE [55], and TE [56] can be transformed

Fig. 4. The two possible lengths of the negative edge in BFGijkl.

to detect BLL localizable nodes if they are applied onto
GA rather than G. Because these algorithms are detecting
localizable nodes based on sufficient localizable conditions on
GA, their detected subgraph satisfied the network localizable
condition in Lemma 1. So their detected nodes on GA are BLL
localizable. But for the following limitations, they may miss
to detect many BLL localizable nodes.
• (Launch condition). TP, WE, and TE require special

anchor distribution to start, which is called launch condition.
1) In TP, for starting trilateration, at least three anchors

are required and the anchors need to have at least one
common neighbor;

2) In WE, there need at least one wheel containing at least
three anchors, otherwise, the wheel structure cannot be
extended so that no localizable node can be detected;

3) In TE, for starting localizability detection by branching,
at least two anchors need to have common neighbors.

These launch conditions greatly limit the application scope
of these algorithms, since the anchor nodes are may not be
deployed as expected.
• (Miss to detect Recursive-3DP nodes). Another problem

of TP, WE, and TE is the miss of detection of many BLL
localizable nodes satisfying Recursive-3DP, since TP, WE, and
TE are designed based on conservative sufficient conditions,
i.e., trilateration and bilateration.

We can see more intuitive examples in Section VI-C.1. Their
detection capability will also be detailed in the evaluation
section.

IV. NEGATIVE EDGE INFERENCE BY

NEIGHBORHOOD INFORMATION

This section details the Negative Edge Inference (NEI)
approach.

A. The Building Block of NEI

Recall that any three neighbors vj , vk, vl of a node vi

contribute to vi’s BLL localizability only if they are mutually
connected. We consider the case where only two pairs of the
three neighbors are connected. Without loss of generality, say
that (vj , vk) and (vk, vl) are connected while (vj , vl) is not
measured as shown in Fig. 4(a). Although vj , vk, vl are in Ni,
none of them is the neighbor of vi in GA due to the absence
of (vj , vl). We regard such a graph with four vertices and five
edges as a building block for negative edge inference, which is
called a basic flipping graph (BFG). The missed edge (vj , vl)
is the negative edge under investigation. Such BFGs can be
widely seen in practical networks.

In our early work [65], it has been proved that the length
of the negative edge djl in the BFG has and only has two
possible lengths, denoted by d+

jl (Fig. 4(a)) and d−jl (Fig. 4(b)).
In this paper, we re-derive the calculation of d+

jl and d−jl
using the Cayley–Menger bideterminants constructed by the
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Fig. 5. Negative edge inference in {vi, vj , vk, vl} with the help of
BFGijmk . (a) Infer djk in BFGijmk ; (b) Infer djl in BFGijkl.

five known edges. In BFGijkl, write ∠jik, ∠lik as α and β,
respectively. Their cosine values can be calculated as [74]:

cosα =
D(vi, vj ; vi, vk)√
D(vi, vj)D(vi, vk)

,

cosβ =
D(vi, vl; vi, vk)√
D(vi, vl)D(vi, vk)

. (8)

D(·) is the Cayley–Menger bideterminant as in (3). Then α
and β are known by arc cos(·). In Δijl, d+

jl and d−jl are
obtained using the law of cosines:

d+
jl =

√
d2

ij + d2
il − 2dijdil cos(α + β),

d−jl =
√

d2
ij + d2

il − 2dijdil cos(α− β). (9)

Then a condition to judge whether the negative edge has
a unique length, i.e., whether the negative edge is implicit,
is presented.

Theorem 3 (Negative Edge Inference [65]): For an arbi-
trary BFGijkl , the length of edge (vj , vl) can be uniquely
inferred as d+

jl if d−jl ≤ R, where R is the maximum ranging
radius.

Thus, the negative edge inference is detailed as:

djl = d+
jl,

If {vi, vj , vk, vl} is a BFG, and d−jl ≤ R. (10)

B. Negative Edge Inference (NEI)
BFG can be further constructed with the help of newly

identified implicit edges. In Fig. 5(a), two edges, i.e., (vj , vl)
and (vj , vk), are not measured, so (10) cannot be applied
in {vi, vj , vk, vl}. But if (vj , vk) is inferred by BFGijmk ,
{vi, vj , vk, vl} becomes a new BFG and (10) can be applied
to infer djl as in Fig. 5(b).

The above scenario implies that negative edge inference
should be conducted in an iterative manner. Algorithm 1
shows the procedure for iterative negative edge inference at
a node vi. The statement “local distances” of vi means the
distances to its neighbors and the inter-neighbor distances. If a
node vi has less than three neighbors, NEI terminates since it
cannot construct any BFG (Line 1-2). But such vi can launch
NEI if its neighbors successfully infer implicit edges and
inform it; Then vi enumerates any three-node combinations
in its neighbors and checks whether they can form a BFG
with vi (Line 4-6). Whenever an implicit edge is inferred,
neighbors should be informed (Line 9-10). A variable c is
used to control the inference loop. Node vi repeats the edge
inference procedure if 1) vi successfully infers at least one
edge, i.e., c ≥ 1, or 2) vi receives informed messages from
neighbors who successfully infers implicit edges using BFG
containing vi (Line 11-13).

C. Properties of NEI
• NEI Improves Node Localizability. NEI better reveals

the true connectivity among neighbors, which is exactly what

Algorithm 1 Negative Edge Inference (NEI)

Input: neighbors: Ni; local distances;
Output: updated Ni; updated local distances;

1 if |Ni| < 3 then
2 return // cannot construct BFG
3 c← 0;
4 for each three-node combinations {vj , vk, vl} in Ni do
5 if {vi, vj , vk, vl} is a BFG then
6 try to infer negative edge as (10);
7 if djl is successfully inferred then
8 c← c + 1;
9 inform vj to add vl to Nj and record djl;

10 inform vl to add vj to Nl and record djl;

11 if c > 0 or receives any inform message from Ni then
12 update Ni and local distances;
13 go back to Line 3;

14 return updated Ni and updated local distances.

BLL node localizability requires as we have mentioned. Thus,
the BLL node localizability can be significantly improved.
For example, vi in Fig. 5(a) has four neighbors but none
of them can contribute to vi’s BLL localizability since they
cannot form triangle to calculate barycentric representation.
After NEI, two triangles can be found, i.e., Δjkm and Δjkl.
Then all the four neighbors also become barycentric neighbors
of vi in GA+. In addition, it will be shown that NEI also greatly
helps in improving RRL localizability.
• Convergence of NEI. For a graph G = {V , E}, |V| = n

and |E| = m. Suppose G+ has Λ edges after adding all
negative edges. If no edge is added in a certain round,
NEI converges; In the worst case, only one edge is added
in each round. NEI converges within Λ − m rounds. Since
Λ ≤ n(n − 1)/2 edges, thus NEI theoretically converges at
most n(n − 1)/2 − m rounds. In actual experiments, NEI
adds more than one edge in one round and converges much
faster.
• Communication message cost. The calculation in both

NEI and barycentric coordinates uses Cayley-Menger bideter-
minants are oriented to a node vi and its three neighbors, so no
additional communication cost is needed in conducting NEI.
Although NEI does not consider multi-hop implicit edges,
they do not impact the construction of GA, since each node’s
location is represented only by direct neighbor’s locations. For
a node vi, only the IDs of the endpoints of the inferred edge
are involved in the ‘inform’ message. Suppose the network
has n nodes and each node’s neighbor count is bounded by
Δ. Thus, in the worst case, vi has to send a message consisting
of only IDs of n−Δ pairs of nodes.
• Time complexity. For complexity analysis, we consider

the node degree of a network G = {V , E} is bounded by
a threshold Δ, i.e., |Ni| ≤ Δ, ∀vi ∈ V . NEI checks any
combination of three-neighbors for finding BFG, which has
complexity O(Δ3). If an edge is successfully inferred, it needs
to inform corresponding neighbors to update the local dis-
tances. At most Δ nodes need to be informed. Thus, the time
complexity of NEI is O(Δ3), which is highly efficient.

Overall, NEI is fully distributed, easy to be implemented,
effective, and reliable.
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D. NEI in More Realistic Scenarios

Although NEI is designed based on the ideal disc model,
it can be applied in more realistic scenarios, including: 1) noisy
ranging, 2) communication link failure, 3) and error decoding
of neighbor states.
• Noisy distance measurements. Denote the noisy mea-

surement by dij = ‖pi − pj‖2+σij ‖pi − pj‖2, where σi,j ∼
N(0, σ2) is zero mean Gaussian noise. Then the ranging
noises have more than 0.95 probability to be within the range
of [−3σ, 3σ]. To tolerate ranging noises, the negative edge
inference condition in (10) can be modified as:

djl = d+
jl,

If d+
jl > R + 3σ and d−jl ≤ R− 3σ. (11)

• Communication link failure. A general link failure
model is considered for any node vi. Suppose its commu-
nication link to a neighbor vj fails with probability 1− qij

at each iteration. Link failures cause less BFG can be con-
structed. As [42], [44], we suppose that the probabilities
{qij(1), · · · , qij(t)} are independent. It implies that a certain
link is not likely to fail continuously. Since NEI is efficient,
vi can check its neighbors for χ times. When new neighbors
are found, vi re-conducts NEI to decrease the impact of link
failure. Experiments under different qij and χ will show that
NEI works well in the presence of link failure.
• Noisy neighbor states. Even if a communication link

(vi, vj) is active, vi can only receive a corrupt version of
pj (vj’s location). Let p̃j be the received state, p̃j(t) =
p̂j(t) + nij(t), where nij(t) indicates the channel noise.
Such noise affects distributed calculation of node locations,
which can be handled by averaging historical information [42],
[44]. However, NEI only needs connectivity information and
distance information. Thus, NEI is not affected in this scenario.

V. DISTRIBUTED BLL LOCALIZABILITY

DETECTION ALGORITHMS

After strengthening neighborhood connectivity, the next
problem is how each node determines its BLL localizabil-
ity distributively. This section presents two distributed algo-
rithms: (1) a distributed Path Extension and Pruning (PEP)
algorithm which guarantees to detect all nodes that satisfy
the Recursive-3DP condition, (2) a Fast Path Extension and
Pruning (Fast-PEP) algorithm which greatly saves the path
calculation and communication costs than PEP but has BLL
node localizability detection performance very close to PEP.
Hereinafter, the explanation of the algorithms is oriented to
a single node vi to show how the algorithms work in a
distributed manner.

A. Path Extension and Pruning (PEP) Algorithm

PEP can be decomposed into constructing GA and then
finding the Recursive-3DP nodes. Verifying Recursive-3DP
needs to check the existence of three disjoint paths (3DP),
which are inherently multi-hop information. In distributed
multi-agent networks, distributed consensus algorithms are
usually adopted for acquiring multi-hop information [71], [75],
[76], where each node only interacts with neighbors.

PEP is designed leveraging the distributed consensus idea.
(1) In the extension stage, each node learns whether it has
3DP to anchors in GA through distributed consensus. A node

is called a 3DP node if it has 3DP to anchors. Otherwise, it is
called a non-3DP node; (2) In the pruning stage, since the
3DP to anchors must reside in GA, each node prunes the
paths passing through non-3DP nodes and rechecks its 3DP
property. After path pruning, if a 3DP node no longer has 3DP
to anchors, it is excluded from 3DP nodes. The removal of a
3DP node will affect the paths passing through it. The process
repeats until each remaining 3DP node finds 3DP to anchors
by only passing 3DP nodes, i.e., the remaining 3DP nodes
satisfy Recursive-3DP and are BLL localizable.

1) Path Extension (PE) Stage for 3DP Detection: Each vi

stores a binary flag ιi to indicate whether vi has found 3DP
to anchors. Its paths to anchors are recorded by a list of paths
LP i. Each element P ∈ LP i is a path starting from an anchor
or a node with ι = 1.

Algorithm 2 Path Extension (PE)
Input: Neighbor Set: Ni

Output: Indicator for 3DP: ιi; List of Paths: LP local
i ;

/* Initialization */
1 NA

i ← cal_bary_nei(Ni), t← 0;
2 LP i(t)← {vi}, ιi ← 1, if vi ∈ A;
3 LP i(t)← ∅, ιi ← 0, if vi /∈ A;
/* Path Extension at Iteration t */

4 receive path lists from vj ∈ NA
i ;

5 if ιi = 1 or LPNA
i

(t) = ∅ then
continue;

6 LPmerge
i ← LPNA

i
(t) ∪ LP i(t) ;

7 if detect_3DP(LPmerge
i ) = true then

8 LP local
i ← LPmerge;

9 LP i(t + 1)← {i}, ιi ← 1 // 3DP detected
else

10 LP i(t + 1)← Aggregate Path List(LPmerge);

// Transmit Path List
11 if LP i(t + 1) �= ∅ and LPi(t + 1) �= LP i(t) then
12 send LP i(t + 1) to NA

i ;

Function Aggregate Path List(LP)
13 add vi to the end of each path in LP ;
14 return LP ;

Algorithm 2 shows the PE routine at node vi. For initial-
ization (Line 1-3), ιi is set as 1 and LP i is {vi} if vi is
an anchor; ιi is set as 0 and LP i is ∅ if vi is an agent.
Each node exchanges paths with its barycentric neighborsNA

i ,
which is calculated by the function cal_bary_nei(Ni). This
function checks each combination of three nodes from Ni.
A combination of three neighbors are added to NA

i if they
are mutually connected.

At the tth iteration of PE, the local behavior of a node vi

has three steps (Line 4-12):
• Receive Path List. vi receives LPj(t) from vj∈NA

i
and merges the received path list with its own path list, i.e.,
LPmerge

i = LPNA
i

(t) ∪ LP i(t).
• Detect 3DP. vi detects whether there are three node dis-

joint paths to anchors in LPmerge
i by a function detect_3DP .

This function checks each combination of three paths until it
finds three paths that share no common vertex or there is no
more three path combination.
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1) If vi detects 3DP, it sets ιi to 1. It is now a 3DP node
and clears its path list, i.e., LPi(t+1) = {vi}. This step
reduces the complexity of path list maintenance. vi also
stores LPmerge

i as LP local
i for later use in path pruning;

2) If vi does not detect 3DP, it adds its own ID to the end
of each path in LPmerge

i and updates LP i(t + 1).
• Send Path List. vi transmits LP i(t + 1) to barycentric

neighbors if its path list changes in this time step and the
progress repeats in the next round. PE stops if vi cannot
receive paths from NA

i or vi detects 3DP at a certain t.
After PE, each vi knows whether it has 3DP to anchors by

exchanging LP with neighbors.
2) Path Pruning Stage and the Design of PEP: To meet

the Recursive-3DP condition, a BLL localizable node should
ensure its 3DP to anchors pass through only 3DP nodes. But
after PE, there may be some 3DP nodes whose disjoint paths
to anchors pass through non-3DP nodes. Thus, a pruning stage
following PE is designed to exclude the 3DP nodes that have
paths passing through non-3DP nodes. The target is to find
a generated graph GA where all nodes in it have 3DP to
anchors.

In the pruning stage, each non-3DP node firstly broadcasts
that “I am not a 3DP node”. When a 3DP node receives the
above message, it removes paths containing the non-3DP node
from its LP local and then rechecks whether 3DP still exist in
LP local. If it no longer has 3DP, it will also broadcast “I am
not a 3DP node” to barycentric neighbors. The process repeats
to exclude 3DP nodes until the remaining 3DP nodes are not
affected by the non-3DP nodes. As a result, the sufficient BLL
localizability condition Recursive-3DP is met.

Algorithm 3 shows the complete procedure of PEP at node
vi. The flag ιi in the pruning stage indicates the Recursive-3DP
property. ιi(0) is the state after PE terminates (Line 1). A list
of non-3DP nodes denoted by F is transmitted over the
network. Fi is initialized as {vi} for a non-3DP nodes vi;
∅ for 3DP nodes (Line 2).

At the tth iteration of the pruning stage, a node vi performs
as follows.
• Receive Non-3DP List. vi receives Fj from any vj ∈
NA

i . The gathered lists are represented as FNA
i

.
• Recheck 3DP. If ιi = 0, vi unites Fi and FNA

i
as the

new Fi (Line 7); If ιi = 1, it recalculates its barycentric
neighbors using only neighbors whose ι = 1 (Line 8). The
non-barycentric neighbors are denoted by N excl

i (Line 9).
Then, vi removes the paths containing any node of Fi∪NA

i

or N excl
i from LP local

i (Line 10). If there still exists 3DP in
LP local

i , vi updates Fi as Fi∪NA
i

(Line 12-13), otherwise, vi

updates ιi to 0 and adds itself to Fi (Line 14-15).
• Send Non-3DP List. vi sends Fi to neighbors if it is

different from the previous iteration (Line 16-17).
Finally, the paths passing through non-3DP nodes are

pruned by exchanging F with neighbors so that the nodes
satisfying Recursive-3DP are detected.

3) Properties of PEP: PEP is proved to have some desired
properties.
• Guaranteed BLL localizability detection performance.

A key advantage of PEP is that it has theoretically guaran-
teed BLL localizable node detection performance as in Theo-
rem 4. The proof is given in Appendix A of the Supplementary
Material.

Theorem 4: Given G, the PEP algorithm can detect all BLL
localizable nodes satisfying Recursive-3DP. That is a node vi

Algorithm 3 Path Extension and Pruning (PEP)

Input: Neighbor Set: Ni;
Output: Indicator of BLL-localizability: ιi;
/* Path Extension */

1 ιi(0), LP local
i (0)← run PE;

2 Fi(0)← {vi} if ιi = 0, Fi(0)← ∅ if ιi = 1;
/* Path Pruning at Iteration t */

3 receive Fj(t) from vj ∈ NA
i and record as FNA

i
(t);

4 if FNA
i

(t) = ∅ then
5 continue;//no new non-3DP node received

6 if ιi(t) = 0 then
7 ιi(t + 1)← ιi(t); Fi(t + 1)← Fi∪NA

i
(t);

else
8 NA

i (t + 1)← cal_bary_nei(∀vj ∈ Ni ∧ ιj(t) = 1);
9 N excl

i ← nodes in Ni but not in NA
i (t + 1);

10 LP local
i (t + 1) ← remove the paths containing nodes

in Fi∪NA
i

(t) or N excl
i from LPlocal

i (t);
11 if detect_3DP (LPlocal

i (t + 1)) = true then
12 ιi(t + 1)← ιi(t);
13 Fi(t + 1)← Fi∪NA

i
(t);

else
14 ιi(t + 1)← 0; // no longer has 3DP
15 Fi(t + 1)← Fi∪NA

i
(t) ∪ {vi};

// Transmit Message
16 if Fi(t + 1) �= ∅ and Fi(t + 1) �= Fi(t) then
17 send Fi(t + 1) to NA

i (t + 1);

satisfies Recursive-3DP if and only if PEP terminates with
ιi = 1.

Integrating with NEI, PEP can detect the BLL localizable
nodes satisfying the new sufficient condition in Theorem 1.
• Convergence speed. Let H be the maximum number of
hops of the node disjoint paths in G. Note that H ≤ |V|.

Theorem 5: The PEP algorithm discovers BLL localizable
nodes within at most 2H communication rounds.

Proof: For any node, let H = [H1, H2, H3] be its
minimum hop counts to three anchors. In the extension stage,
the node can receive the path information of anchorAk at most
Hk steps, k ∈ {1, 2, 3}. Thus, it collects its path information
within max(H) rounds. Similarly, in the pruning stage, at most
max(H) rounds are needed to collect the non-3DP node list.
Since max(H) ≤ H , PEP discovers BLL-localizable nodes
within at most 2H rounds. �
• Free of launch condition. In PEP, new localizable nodes
are found by checking their path list to anchors, which is
independent of the spatial distribution of anchors. Thus, PEP
does not require any special launch condition.
• Time complexity. In the extension stage, calculation of
barycentric neighbors checks each combination of three neigh-
bors, which has complexity O(Δ3); Detection of 3DP selects
any three neighbors and checks whether their paths share
common vertices. Suppose the number of paths of each node
is bounded by κ. Since a node can find at most one disjoint
path through one neighbor, thus the complexity is O(Δ3κ3);
In the pruning stage, non-3DP nodes only need to receive and
update the non-3DP node list, which has complexity O(Δ).
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Meanwhile, 3DP nodes need to re-evaluate their 3DP, which
has complexity O(Δ3κ3). Overall, the time complexity of PEP
is O(Δ3κ3).

Since Δ is usually small especially in sparse networks, the
complexity is mainly determined by κ. 1) when anchors are
closely deployed, agents near the anchors quickly collect 3DP
to anchors. Such an agent vi replaces LP i with a single node
{vi} (κ reduces to 1) and serves as new anchors to enable
their nearby agents to collect 3DP and reduce κ. Thus, κ is
small in such setting; 2) when anchors are far apart or the
network is sparse, an agent needs to expand its LP constantly
until 3DP is found so that κ can be large as the path info
propagates. Thus, the complexity of PEP depends on whether
an agent can effectively reduce its LP .
• Communication cost. In PEP, each vi exchanges the LP i

and Fi messages. There are two designs in PEP to save the
communication cost without affecting correctness. 1) If vi

detects 3DP, it replaces LPi simply by {vi} and transmits
only {vi}. This is because any other node can find at most
one DP to anchors through vi. It is not necessary to record
the detailed paths to anchors before vi; 2) If vi is not a 3DP
node yet, it transmits its path list LPi only when its path list
changes in this timestamp. LPi has at most κ paths and each
path contains at most H IDs, where H is the maximum hop
number of the network. In the pruning stage, Fi is transmitted
only when it is updated. Fi is a list of non-3DP nodes, which
contains at most n IDs.

A case study of PEP is given in Appendix B of the
Supplementary Material, along with the communication cost
demonstration.

B. Fast-PEP Algorithm

PEP pursuits the guaranteed BLL localizable node detection
performance by paying the cost that each node keeps and
negotiates all the paths to anchors with barycentric neighbors.
Although path list simplification and event-driven communica-
tion are used, the negotiating is still expensive. Thus, Fast-PEP
is designed. It keeps only the shortest paths to anchors in each
node’s path list, greatly reducing the path list negotiating cost
while showing attractive properties.

1) Design of Fast-PEP: According to the property analysis,
the complexity of PEP is mainly determined by κ, i.e., the
magnitude of the path list. To accelerate PEP, an immediate
idea is lightening the path list to be stored and transformed.
Note that we are concerned about disjoint paths to different
anchors, so we consider keeping only one path from a certain
node to each anchor. Specifically, we keep the shortest path.
If there is more than one shortest path, choose the one with the
smaller ID of the second node. Using Algorithm 4 to replace
Function Aggregate Path List in the extension stage, Fast-
PEP is formed. Other procedures are consistent with PEP.

Take Fig. 6 as an example, two anchors and three agents
are shown and other network details are omitted to ease
the presentation. The lightened LP in Fast-PEP is shown in
Table III. At t = 1, v4 and v5 only find one path to each
anchor, so path lightening is not needed. At t = 2, v4 has two
paths to reach anchor v2, i.e., v2 → v4 and v2 → v5 → v4

(written as 2; 2, 5 for brevity). Using Algorithm 4, the longer
path 2, 5 is abandoned. Similarly, v6 has two paths to anchor
v2, i.e., 2, 4; 2, 5, then only 2, 4 will be kept; At t = 3,
the LP of each node is the same with t = 2. The system
reaches consensus. For each node, PEP stores LPmerge while

Algorithm 4 Aggregate Shortest Path
Input: LP : arbitrary list of paths
Output: LSP : the list of shortest paths

1 LSP ← ∅ ;
2 group LP by starting vertex;
3 add the shortest path in each group to LSP ;
4 add vi to the end of each path in LSP ;
5 return LSP ;

Fig. 6. A schematic diagram of Fast-PEP.

TABLE III

LP IN FAST-PEP

Fast-PEP only stores LSP (the lightened LPmerge), thus the
path list saved by Fast-PEP is significantly lightened.

2) Properties of Fast-PEP: An attractive property of Fast-
PEP is that although each node uses the lightened LP , in the
path expansion phase, Fast-PEP ensures that all 3DP nodes
are correctly detected.

Theorem 6: A node vi has 3 disjoint paths to anchors if and
only if Fast-PEP terminates with ιi = 1 after the extension
phase.

The proof of Theorem 6 is given in Appendix C of the
Supplementary Material. Then, we show the correctness of
Fast-PEP.

Theorem 7: If Fast-PEP terminates with ιi = 1 after the
pruning stage, the node vi must satisfy the Recursive-3DP
condition.

Proof: When rechecking 3DP in the pruning stage, only
paths passing through 3DP nodes will be counted. After prun-
ing reaches consensus, all 3DP nodes reach anchors through
three disjoint paths containing only 3DP nodes. So they all
satisfy the Recursive-3DP condition. �

For complexity analysis, we consider that n∗ out of the n
agents are BLL localizable. Since only the shortest path to
each BLL localizable node is stored, the number of paths of
each node is at most n∗. Overall, the complexity of Fast-PEP
is O(Δ3n∗3). As to communication cost, when 3DP can be
found, Fast-PEP also only transmits its own ID as PEP. When
3DP cannot be found, the upper bound of path number in LP i

reduces to n∗.
Fast-PEP uses lightened path list, so it no longer guarantees

to detect all Recursive-3DP nodes like PEP. For a 3DP node,
it may have multiple combinations of three disjoint paths to
anchors. However, Fast-PEP only stores the shortest combina-
tion of them. Supposing that a node vi satisfies Recursive-3DP,
Fast-PEP wrongly detects it as unlocalizable if the following
conditions hold simultaneously.
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1) vi has at least one combination of three disjoint paths
that pass through only 3DP nodes.

2) The 3DP of vi stored by Fast-PEP pass through at least
one non-3DP node.

However, later experiments will show that the two con-
ditions are rarely simultaneously met. Since for any agent,
although many paths are not stored and transmitted, the
agent can still obtain these paths from neighbors’ path list
negotiation. For example, in Fig. 6, the path 2, 5 is abandoned
for v6 at t = 2, it can still receive this path from neighbor
v5 at t = 3. Even this path is again abandoned due to
the existence of path 2, 4, it can immediately become a
3DP node if a disjoint path to another anchor (except for
v1 and v2) is received. Thus, the localizable nodes detected
by Fast-PEP are almost always the same as PEP. More-
over, Fast-PEP inherits the properties of guaranteed con-
vergence, launch condition free, and limited communication
overhead.

C. PEP and Fast-PEP in Realistic Scenarios

In considering the more realistic environments mentioned
in Section IV-D, PEP and Fast-PEP are only affected by com-
munication link failure since the distance measurements and
neighbor states are not involved in their routine. The reduction
of links causes that some BLL localizable nodes may be
wrongly detected as unlocalizable. Since NEI can significantly
strengthen the neighborhood connectivity, re-conduction of
PEP and Fast-PEP is not essential. Experiments will show that
the detection performance is still satisfactory compared with
existing detection algorithms.

D. Application of NEI and PEP

Section III-A has shown that ignoring node localizability
in BLL leads to incorrect convergence of node locations.
Since NEI, PEP, and Fast-PEP are all distributed, they can
be well integrated with the BLL algorithms. After distributed
BLL localizable node detection, each node can select only
localizable neighbors to construct its linear equation, so that
the impacts of the unlocalizable nodes can be excluded. Then
the incorrect convergence problem is avoided. A Localizability
Aware Barycentric linEar Localization framework (LABEL)
is therefore formed, which is detailed in Algorithm 5. Note
that PEP can be replaced by Fast-PEP for better efficiency.
In addition, the unlocalizable nodes may cause that the iter-
ative system cannot converge. The localizability knowledge
help to exclude such effects.

VI. EVALUATION

Extensive evaluations are conducted to verify the effective-
ness of NEI, PEP, Fast-PEP, and LABEL. A testbed validation
is firstly given and other parts are large-scale simulations
conducted using MATLAB.

A. Testbed Validation

Experiments in a testbed are conducted. Fig. 7 illustrates a
network of 14 wireless UWB nodes (3 anchors and 11 agents)
in a 12m× 10m open square. The ranging radius R is set to
around 5m by adjusting the transmission power. The ground
truth locations are collected manually with the aid of the
bricks (0.3m × 0.6m). The localizable nodes characterized

Algorithm 5 LABEL
Input: distance measurements to neighbors
Output: p̂i: localization result

1 run NEI to strengthen neighborhood connectivity;
2 run PEP to obtain BLL node localizability;
3 if vi is BLL localizable then
4 calculate the barycentric coordinates with localizable

neighbors;
5 calculate p̂i with distributed solvers, e.g., Richardson

iteration [46] or DCG [72];
else

6 keep idle; // do not localize BLL unlocalizable nodes

Fig. 7. Testbed in an open area.

by RR3P and Recursive-3DP are {v6, v8, v9, v11, v12, v13}
and {v12, v13}, respectively. After NEI, the detected implicit
edges are plotted as dashed lines. The localizable nodes
become {v4, v5, v6, v7, v8, v9, v10, v11, v12, v13} through both
RR3P and Recursive-3DP. Thus NEI helps characterizing truly
localizable nodes more correctly.

Then, using PEP, the detected localizable nodes are also
{v4, · · · , v13}. In LABEL, only localizable nodes participate
in distributed location calculation and the unlocalizable node
{v14} is excluded. The estimated locations are all initialized
from the center of the area, shown as the black cross marker.
The converged locations are shown as asterisk markers. The
colored lines denote the convergence trails of estimated loca-
tions. It can be observed that the estimated locations are close
to true locations (hollow circles). Overall, through NEI and
PEP, more BLL localizable nodes are found and the BLL
localizable nodes are correctly localized.

B. The Effectiveness of NEI

The effectiveness of NEI is evaluated from two aspects, 1)
strengthening the neighborhood connectivity, and 2) increasing
the number of theoretically localizable nodes in both RRL and
BLL. The RR3P nodes are identified by combining network
flow and the pebble game algorithm [68]. The Recursive-3DP
nodes are identified by the IMF algorithm [57]. They are all
centralized algorithms.

1) Visualizing the Effectiveness of NEI: Fig. 8 shows a
network with 180 agents and 3 anchors. The RRL localizable
nodes satisfying RR3P and BLL localizable nodes satisfying
Recursive-3DP are plotted in Fig. 8(a) and Fig. 8(b), the num-
bers are 147 and 112, respectively. Fig. 8(c) and Fig. 8(d) show
that NEI infers lots of implicit edges and the neighborhood
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Fig. 8. Theoretically localizable nodes using different sufficient condition.
(a) RR3P nodes in G. (b) Recursive-3DP nodes in GA. (c) RR3P nodes in
G+. (d) Recursive-3DP nodes in GA+.

connectivity is strengthened for each node. The number of
RRL localizable nodes and the number of BLL localizable
nodes both increase to 179. It is verified by global rigidity
that the detected localizable nodes are truly localizable. So the
result shows the remarkable effect of NEI in finding truly
localizable nodes for both RRL and BLL.

2) Statistical Results: In statistical results, the neighborhood
connectivity is assessed by average node degree AvgDeg =
1
|V|

∑
vi∈V |Ni|, which can be controlled by varying the max-

imum ranging radius R. The number of nodes is set to be
103 (100 agents and 3 anchors) and R is varied from 14m
to 24m. For each R, 1,000 networks are generated randomly
for statistical results. Fig. 9 presents the AvgDeg of G,
GA, G+, and GA+. The error bar represents the standard
deviation. It shows that AvgDeg in GA is always smaller
than that in G, because only neighbors forming triangles can
participate in calculating the barycentric coordinates. By NEI,
the AvgDeg in G+ and GA+ increase significantly. This shows
the effectiveness of NEI and the rich implicit edges in nodes’
neighborhood.

The proportion of RR3P nodes, Recursive-3DP nodes,
RR3P nodes in G+ (written as “NEI+RR3P”), and
Recursive-3DP nodes in GA+ (written as “NEI+Recursive-
3DP”) are compared in Fig. 10. It shows that: (1) the unlo-
calizable nodes exist even in highly dense networks when
R = 24 and after running NEI. This suggests the importance of
localizable node detection for running BLL correctly. (2) With-
out NEI, the number of BLL localizable nodes is always much
less than the number of RRL localizable nodes, especially in
sparse networks. This suggests the importance of inferring the
implicit edges. (3) In all settings, NEI can greatly help to detect
more RRL localizable nodes and BLL localizable nodes. (4)
The contribution of NEI is more significant in sparse networks
since neighbors of many nodes cannot form triangles without
the implicit edge information.

Fig. 9. The AvgDeg in G, GA, G+, and GA+.

Fig. 10. Proportion of localizable nodes by different sufficient conditions.

TABLE IV

THE NUMBER OF LOCALIZABLE NODES IN FIG. 11, |S| = 180

C. The Effectiveness of PEP and Fast-PEP

PEP and Fast-PEP are compared with the trilateration proto-
col (TP) [29] and the triangle extension (TE) [56] algorithms.
The number of theoretically BLL localizable nodes satisfying
Recursive-3DP in GA+ is also compared.

1) Visualizing the Effectiveness of PEP: Fig. 11 illustrates
the localizable nodes detected by different algorithms using
the same network topology as Fig. 8. The specific numbers
are shown in Table IV.
• (Launch Condition (LC) free). In Fig. 11(a) - Fig. 11(c),

“LC of TP” means 3 anchors have common neighbors. “LC
of TE” means 2 anchors have common neighbors. “None LC”
represents no anchors have common neighbors. TP and TE
fail to detect any localizable node if the corresponding LC is
not met. By contrast, PEP works stably under any LC.
• (Much better BLL localizability detection perfor-

mance). Fig. 11(a) and Fig. 11(b) show that even when
the corresponding LC is met, TP and TE still miss to
detect many Recursive-3DP nodes. PEP always detects all the
Recursive-3DP nodes as given in Table IV.
• Especially in Fig. 11(d), it can be seen that after integrat-

ing with NEI, almost all nodes in the network are successfully
detected as localizable by PEP. This shows that NEI+PEP can
greatly improve the localizable node detection capability than
existing sufficient conditions, i.e., TP and TE. They help BLL
successfully discover these localizable nodes to localize them
using LABEL.
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Fig. 11. The detected localizable nodes using different detection algorithms.
Edges in (a)-(c) are EA. Edges in (d) are EA+ .

Fig. 12. The localizable nodes detected by different algorithms.

Fig. 13. The statistics of localizable nodes in presence of link failure.

2) Statistical Results of Detection Capacity: Under each
AvgDeg, 1,000 networks are randomly generated and the
statistical results are presented in Fig. 12. The average pro-
portion of Recursive-3DP nodes in GA+ is plotted with the
blue horizontal line. For fairness, all the detection algorithms
are integrated with NEI. Results show that TP and TE miss
a large portion of nodes satisfying the Recursive-3DP condi-
tion. Meanwhile, PEP always detects all of them. Fast-PEP
returns the same result as PEP in most networks and misses
Recursive-3DP nodes very rarely.

To consider more realistic scenarios, we assume that the
communication link between any vi and a neighbor vj fails
with the probability of 1− qij . In Fig. 13, AvgDeg is 8. The
success probability qij varies in {0.9, 0.8} and the number

Fig. 14. The algorithm time consumption in different settings.

Fig. 15. A summary of distributed localizable node detection algorithms.

of attempts χ to run NEI varies in {1, 2, 3}. It is shown that
PEP and Fast-PEP are less affected by link failure. Because
although some links fail, there are still many paths that can be
received. Moreover, the impact of link failure can be alleviated
by a very small number of NEI reattempts.

3) Statistical Results of Detection Efficiency: Fig. 14 shows
the time consumption of different algorithms under different
node degree and anchor distribution settings. Since TP and
TE require launch conditions to start, their time consumption
is plotted only when 3 anchors have common neighbors.
They require much less time than PEP. Fast-PEP runs much
more efficiently than PEP. For networks with random anchor
distributions, only PEP and Fast-PEP can work. Fast-PEP can
save nearly 70% time than PEP in denser networks or when
there are more anchors. This is because the agents can quickly
collect their 3DP to anchors and serve as new anchors to help
other agents finding 3DP.

A summary of these distributed BLL localizable node
detection algorithms is given in Fig.15.
• PEP and Fast-PEP are free of launch condition.
• Only PEP can guarantee to detect all BLL localizable

nodes satisfying the Recursive-3DP condition.
• Fast-PEP has a very close detection performance as PEP,

but it is much more efficient.

D. The Effectiveness of LABEL

The effectiveness of the LABEL framework is evaluated.
Comparison algorithms include the state-of-the-art BLL algo-
rithm ECHO [46] and the representative centralized RRL
algorithm G2O [14], both of which do not consider node
localizability. The evaluation metric uses the localization error
calculated by ||p̂i −pi||2, where p̂i and pi are the calculated
location and ground truth location of vi, respectively.

1) Visualizing the Localization Accuracy: Fig. 16 visualizes
the localization results of different algorithms in a network
of 35 nodes. The ground truth locations of the anchors,
localizable nodes, and unlocalizable nodes are plotted as red
diamonds, green circles, and brown squares, respectively. The
calculated locations are plotted as red asterisk markers. The
blue edge connecting the ground truth and the calculated
location implies the localization error. The term “localizable”
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Fig. 16. A visualization of the localization accuracy.

Fig. 17. The cumulative distribution function (CDF) of localization errors.

means BLL localizable when ECHO, and LABEL are adopted,
and it means RRL localizable when G2O is adopted. Fig. 16
shows that ECHO and G2O indiscriminately localize both
localizable and unlocalizable nodes, whose results are not
correct when the entire network is not localizable; LABEL
only localizes the BLL localizable nodes, but the calculated
locations are ensured to be correct and LABEL can tell
which of them are localizable. Moreover, LABEL significantly
increases the number of localizable nodes through NEI.

2) Statistical Results of LABEL’s Accuracy: For statistical
results of the accuracy, 1,000 random networks are gener-
ated. For fairness, only the localization errors of localizable
nodes are counted. The ranging noises are set as the widely-
adopted zero-mean Gaussian noises as in [65]. The CDFs
of localization errors using different algorithms are shown in
Fig. 17. Even when the distances are noiseless, i.e, σ = 0, only
LABEL has zero localization error, because ECHO and G2O
are impacted by the unlocalizable nodes. When the distances
are noisy, LABEL is still remarkably more accurate than
ECHO.

3) On the Overhead of NEI and PEP: Compared with
the existing BLL methods, LABEL introduces two additional
modules before location iteration, i.e., NEI and PEP. Their
overhead in the entire localization process is evaluated. For the
network in Fig. 16, the localization error variation progresses
in LABEL and in ECHO is compared in Fig. 18. Nodes in
ECHO converge to wrong locations after 50,000 rounds.
In LABEL, the time consumed by NEI and PEP is equal to
130 rounds and 27 rounds in ECHO, respectively. LABEL
uses DCG [72] as the distributed location updating algorithm.
Through the NEI, PEP, and DCG routine, LABEL calculates
the node locations correctly in 937 rounds. In the LABEL
framework, PEP and NEI takes only a very small portion in
the whole process.

4) Statistical Results of Overhead: The average percentage
of iterations occupied by NEI, PEP, and DCG are shown in
Fig. 19. It shows that NEI takes more time in dense networks

Fig. 18. The evolution of localization errors in different phases.

Fig. 19. The percentage of iterations occupied by different phases.

because a node needs to check more BFGs. For PEP, the
most time-consuming scenario is when the network is sparse.
The localizable nodes need to wait until 3DP can be found.
When edges are dense, PEP terminates rapidly and consumes
only 1.2% of the total iterations, because localizable nodes can
efficiently collect 3DP information. Moreover, if another dis-
tributed solver Richardson iteration is adopted, the overhead
of NEI and PEP is almost negligible. Overall, NEI and PEP
take only a small portion of time in the localization process
but provide much better localization accuracy than existing
BLL algorithms that ignore node localizability.

VII. CONCLUSION AND FUTURE WORK

This paper investigates BLL in realistic and challenging
scenarios where networks are not entirely localizable. A key
observation is that BLL localizability requires stronger neigh-
borhood connectivity. By inferring implicit edges using NEI,
the BLL node localizability can be more accurately character-
ized. Moreover, PEP and Fast-PEP are proposed for distributed
BLL localizable node detection. PEP is free of launch condi-
tions and ensures to find BLL localizable nodes satisfying the
Recursive-3DP condition. Fast-PEP can significantly reduce
time consumption while showing satisfactory performance.
Using NEI and PEP as an initialization procedure, a local-
izability aware BLL framework, i.e., LABEL is proposed,
which guarantees the correct location convergence of local-
izable nodes. The effectiveness of the proposed algorithms in
localizability, accuracy, and efficiency are validated using both
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real and simulated networks. The understanding of BLL node
localizability improves the application scope of BLL.

Many interesting problems arising from this study deserve
further research. The BLL localizability condition in 3D can be
investigated using the idea of NEI and PEP. The detected node
localizability can also give knowledge about the distribution of
the network, e.g., the area where a large number of unlocaliz-
able nodes gather indicates the weakness of the network. Such
knowledge provides hints on distributively optimizing node
deployment or locally determining motion control of agents
for better network localization, which will be studied in future
work.
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