
8

InferLoc: Hypothesis-Based Joint Edge Inference and

Localization in Sparse Sensor Networks

XUEWEI BAI, YONGCAI WANG, HAODI PING, XIAOJIA XU, DEYING LI, and
SHUO WANG, Renmin University of China, People’s Republic of China

Ranging-based localization is a fundamental problem in the Internet of Things and unmanned aerial vehicle
networks. However, the nodes’ limited-ranging scope and users’ broad coverage purpose inevitably cause
network sparsity or subnetwork sparsity. The performances of existing localization algorithms are extremely
unsatisfactory in sparse networks. A crucial way to deal with the sparsity is to exploit the hidden knowl-
edge provided by the unmeasured edges, which inspires this work to propose a hypothesis-based Joint Edge
Inference and Localization algorithm called InferLoc. InferLoc mines the Unmeasured but Inferable Edges
(UIEs). Each UIE is an unmeasured edge, but it is restricted through other edges in the network to be inside
a rigid component, so it has only a limited number of possible lengths. We propose an efficient method to
detect UIEs and geometric approaches to infer possible lengths for UIEs in 2D and 3D networks. The inferred
possible lengths of UIEs are then treated as multiple hypotheses to determine the node locations and the
lengths of UIEs simultaneously through a joint graph optimization process. In the joint graph optimization
model, to make the 0/1 decision variables for hypotheses selection differentiable, differentiable functions are
proposed to relax the 0/1 selections, and rounding is applied to select the final length after the optimization
converges. We also prove the condition when a UIE can contribute to sparse localization. Extensive exper-
iments show remarkably better accuracy and efficiency performances of InferLoc than the state-of-the-art
network localization algorithms. In particular, it reduces the localization errors by more than 90% and speeds
up the convergence time more than 100 times than that of the widely used G2O-based methods in sparse
networks.

CCS Concepts: • Networks→Network algorithms; • Software and its engineering→ Software notations

and tools; • Theory of computation→ Design and analysis of algorithms;

Additional Key Words and Phrases: Network localization, edge inference, joint graph optimization model,
sparse and noise networks

ACM Reference format:

Xuewei Bai, Yongcai Wang, Haodi Ping, Xiaojia Xu, Deying Li, and Shuo Wang. 2023. InferLoc: Hypothesis-
Based Joint Edge Inference and Localization in Sparse Sensor Networks. ACM Trans. Sensor Netw. 20, 1, Arti-
cle 8 (October 2023), 28 pages.
https://doi.org/10.1145/3608477

This work was supported in part by the National Natural Science Foundation of China Grant No. 61972404, 12071478; Public
Computing Cloud, Renmin University of China; Blockchain Laboratory, Metaverse Research Center, Renmin University of
China.
Authors’ address: X. Bai, Y. Wang (corresponding author), H. Ping, X. Xu, D. Li, and S. Wang, Renmin University of
China, Beijing 100872, People’s Republic of China; emails: {bai_xuewei, ycw, haodi.ping, xuxiaojia, deyingli, shuowang18}@
ruc.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1550-4859/2023/10-ART8 $15.00
https://doi.org/10.1145/3608477

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

https://orcid.org/0000-0001-6113-609X
https://orcid.org/0000-0002-4197-2258
https://orcid.org/0000-0002-7947-7826
https://orcid.org/0000-0001-9949-9451
https://orcid.org/0000-0002-7748-5427
https://orcid.org/0000-0002-6720-1646
https://doi.org/10.1145/3608477
mailto:permissions@acm.org
https://doi.org/10.1145/3608477
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3608477&domain=pdf&date_stamp=2023-10-19

8:2 X. Bai et al.

1 INTRODUCTION

Network localization is a foundation problem in the Internet of Things and Unmanned Aerial

Vehicle (UAV) networks [1–3]. The critical problem of network localization is to calculate the loca-
tions of agents based on the partially measured distances among the agents [4]. Various algorithms
have been proposed for the network localization problem, including trilateration-based methods
[5, 6], distance equation-based methods [7], graph optimization methods [8–10], and component
stitching based methods [11–13]. More localization algorithms can be found in a recent survey [14].

The condition for a node or a network to be uniquely localized, known as the localizability prob-
lem, has also attracted great attention. It points out that only when the underlying graph is global
rigid can all the nodes in the network be uniquely localizable [15, 16]. However, when the un-
derlying measurement graph is sparse, localizability and localization accuracy are unsatisfactory
because there are too few edge constraints to restrict the freedom of node locations [11–13].

When the distance measurements are sparse, the measured distances are too limited to
constrain the nodes to be correctly localized. The location calculation algorithms [8–13] may
converge to ambiguous results that differ significantly from the ground truth. An example is
shown in Figure 1. In this example, Figure 1(a) gives the ground truth locations of the nodes, and
Figure 1(b) shows the network localization result calculated by G2O [8], a widely used graph
optimization method. Although G2O can successively minimize the least square residue error in
the objective, the realized network formation differs significantly from the ground truth. Some
components have serious flipping errors, such as nodes 19 and 29. This is because the algorithm
itself cannot disambiguate flipping ambiguity when the ambiguous location solutions can also
satisfy the measured distance constraints.

Various methods have been proposed to deal with sparse network localization. A common idea
is to mine additional constraints by mining and exploiting the structural knowledge to deal with
flipping ambiguity. Saha and Sau [10] added the inequality constraints of negative edges into the
optimization problem to form a constrained optimization problem. Yang and Liu [16] inferred the
implicit edges by finding vertex pairs shared by two rigid subgraphs. ARAP [13] and ASAP [17]
methods divided the graph into patches to infer the lengths of the negative edges in each patch by
the Triangle Inequality condition. WCS [12] further proposed weighted patch stitching to assign
higher weights to denser patches with better local realization qualities.

Another class of idea is to disambiguate flipping ambiguity by analyzing the conditions under
which the flipping ambiguity may occur. The Unit Disk Graph (UDG) [18] constraint is exploited
to avoid flipping ambiguities [19]. The basic idea of using UDG is that the inter-distance between
two nodes without distance measurement should be larger than the ranging radius. The flipping
conditions are analyzed in the work of Ping et al. [20], which presented local flipping-free con-
ditions and global flipping-free conditions based on the geometric characteristics of graph com-
ponents. Kannan et al. [21, 22] presented the probabilistic analysis of flipping ambiguities. They
considered the noise impacts and evaluated the flipping probabilities. Moore et al. [23] proposed
the idea of a robust quadrilateral to avoid flipping caused by noises. More related work will be
given in Section 2, and several typical methods have been summarized in Table 1.

The common ideas of existing methods tend to mine exactly hidden knowledge to improve sparse
network localization. For example, the UDG constraint based approach [19] is based on an ideal
assumption that an edge is not measured because two nodes are far away than the ranging radius.
Using this regulation, the localization results in which the two nodes are closer than the ranging
radius can be ruled out. The edge inference based methods (e.g., [16, 20]) infer edges that satisfy
special conditions to infer a unique length for such an unmeasured edge. Although this inferred
exact knowledge can help improve sparse network localization, such methods have two drawbacks:

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:3

Fig. 1. An example network formation and its realization.

(1) Relying solely on exact hidden knowledge can be overly assertive. For example, when com-
munication blocking occurs, two nodes cannot measure inter-distance even if they are close
enough. Using UDG constraints may lead to inaccurate results in such noisy cases.

(2) The inferable exact knowledge is rare, and the exact knowledge conditions are hard to sat-
isfy. Therefore, they have limited impacts in sparse network localization. For example, the
number of unmeasured edges whose length can be uniquely inferred is limited.

Actually, in sparse networks, even if the length of a hidden edge cannot be exactly inferred, only
if it is in a rigid graph, its possible lengths are limited. This is because each rigid graph has a limited
number of possible realizations [24]. However, without the exact length, the knowledge about
the limited number of possible lengths can still provide valuable information in sparse network
localization. This article treats these possible discrete lengths as multiple hypotheses. It proposes
a joint edge length inference and network localization method to automatically vote for the most
compatible edge length and the localization results. Since the length of one UIE is restricted in
multiple subgraphs and has a unique ground truth, the most consistent result of multiple subgraphs
is generally close to the ground truth, even if the network is sparse.

This work utilizes the massive unmeasured edges whose possible lengths are not unique but
limited. Such edges are called Unmeasured but Inferable Edges (UIEs). The possible lengths of
a UIE may differ in different rigid subgraphs containing it. We show that not all UIEs are useful.
The condition of what kinds of UIEs can contribute to the InferLoc framework is investigated by
proposing the penalty of inconsistency. Then InferLoc presents a joint learning model that jointly
infers the lengths of UIEs and the locations of nodes. InferLoc has broad applicability and extracts
much more valuable knowledge from sparse networks.

We present efficient methods to detect UIEs and infer possible lengths of UIEs. A 0/1 selection
weight for each hypothesis in each subgraph is learned online to determine which hypothesized
measurement is compatible with the other subgraphs and with the final localization. InferLoc also
proposes the concept of qualified UIEs to enhance noise immunity. The key contributions of this
article are as follows:

(1) We propose a joint graph optimization model that utilizes multiple hypothesized lengths of
UIEs to simultaneously determine the node locations and the lengths of the UIEs in both 2D
and 3D sparse networks.

(2) The conditions of what kinds of UIEs can contribute to the InferLoc framework are investi-
gated, and the penalty of inconsistency is proposed.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:4 X. Bai et al.

(3) We present efficient methods to detect UIEs and efficient geometric methods to infer hypoth-
esized lengths of UIEs in three kinds of special subgraphs in 2D and 3D networks. Two kinds
of these methods use local knowledge, and one kind uses multiple-hop knowledge.

(4) A Levenberg-Marquardt optimization algorithm is exploited to conduct the joint optimiza-
tion. It uses continuous switching functions to approximate the 0/1 selection variables, mak-
ing the optimization objective differentiable. Rounding is applied to the continuous variables
to select the final edge length.

(5) Experiments show that InferLoc can achieve remarkably better accuracy and efficiency than
the state-of-the-art localization methods in sparse networks. In particular, it can reduce lo-
cation errors by more than 90% while improving convergence speed by more than 100. The
inferred knowledge helps to reduce significantly the number of iteration steps of the graph
optimization algorithm.

2 RELATED WORK

Various methods have been proposed in the literature to improve localization performances and
tackle flipping ambiguity when the network is sparse. The literature related can be classified into
three categories: (1) UDG-based flipping avoidance methods, (2) geometric conditions analysis
based methods, and (3) edge inference methods.

2.1 UDG-Based Methods

The UDG constraint exploits hidden information that if the edge is unmeasured, the two end
nodes are beyond the ranging scope [18]. It is mainly used to avoid flipping ambiguity under
the ideal-ranging model assumption. Oliva et al. [6] proposed SELA, a “shadow edge” method
using a UDG constraint to improve trilateration-based localization. Guo et al. [25] concentrated
on the flipping ambiguity of micro-UAV networks. They proposed a bi-boundary model based on
UDG for bilateration and a unique localization criterion to avoid flipping ambiguities in trilater-
ation localization. Although these methods improve localization effectiveness, they are sensitive
to noise because they do not consider the presence of noise. Lillis [26] and Cagirici [19] consid-
ered the UDG constraint in the presence of noise, which made the UDG constraint more realistic.
However, the UDG constraint is based on an ideal communication model, which differs from that
in practice. Moreover, UDG-based methods generally need the information of already localized
nodes and a sequential localization manner. However, sequential localization has unsatisfactory
localizability [16] and accuracy since its error accumulation and sequential localizability detection
process [27].

2.2 Geometric Conditions Analysis Based Methods

Moore et al. [23] proposed the concept of robust quadrilateral. Some trilateration-based algorithms
can reduce flipping ambiguities by selecting “robust quadrilaterals” [28]. Kannan et al. [21, 22] pro-
posed a probabilistic analysis method to estimate the plane flipping probabilities to enhance the
robustness criterion. Sun et al. [29] proposed a robust component-based localization method to
evaluate the risks of the component’s local deformation and flipping. The problem of checking
whether a straight line intersects with the range circles is called the Existence of Intersecting

Line (EIL) problem. Wang et al. [30] pointed out that the EIL problem is equivalent to checking
the flipping ambiguity. Liu et al. [31, 32] improved the EIL detection methods. However, these
methods mainly use geometric methods to avoid the flipping ambiguities, which still rely on mea-
sured knowledge. They can only resolve the cases when measurements sufficiently determine the
ambiguities.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:5

Table 1. Comparison of InferLoc and Several Typical Methods in Sparse Network Localization

Method
Kinds of

Solved UIEs
Noise 3D

Infer Edge

Lengths

Independent of

Regulation

Joint

Learning

SELA
[6]

× × × × ×

Implicit Edge
[16]

× � × × ×

Ping et al.
[20]

× � � × ×

InferLoc � � � � �

2.3 Edge Inference Based Methods

Saha and Sau [10] added the negative edge based inequality constraints into the optimization prob-
lem to form a constrained optimization problem, which can reduce the occurrence of some wrong
flipping problems. Zhang et al. [13] and Cucuringu et al. [17] divided the graph into patches to in-
fer the lengths of the negative edges in each patch by the Triangle Inequality condition. However,
these methods only determine the range of the unmeasured edge, not the actual length of the edge.
Yang and Liu [16] defined an unmeasured edge shared by two independent rigid components as
implicit edge. They augmented the original graph with these implicit edges to improve the node
localizability. They only studied the number of implicit edge lengths without further investigating
the calculation of edge lengths. Ping et al. [20] utilized negative edge inference in special four-
vertex, five-edge BF G (basic flipping graphs). A method is proposed to infer the length of the
unmeasured (negative) edge, which works as an additional measurement to improve the graph
optimization accuracy. However, their method can only infer negative edges in specific subgraphs,
and the accuracy is improved only when the exact lengths of the negative edges can be inferred.
However, in practice, there are massive unmeasured edges whose exact lengths cannot be inferred
precisely, which are not utilized. What is more, these methods cannot handle the case of flipping
ambiguity due to the unpredictability of the environment.

We summarize the main differences between the proposed InferLoc with several typical methods
for sparse network localization in Table 1. The compared methods are SELA [6], Implicit Edge [16],
and Ping et al. [20]. These methods are compared from six aspects: (1) the kinds of UIEs that can
be solved, (2) whether the effect of noise is considered, (3) whether they can be applied in 3D, (4)
whether they can accurately find the lengths of UIEs and thus improve sparsity, (5) whether they
are independent of handcraft regulation, and (6) whether this method uses jointly learning.

The comparison shows that existing methods exploit particular UIEs, whereas InferLoc can uti-
lize general UIEs. The UIE used by the previous methods is only a tiny fraction of the overall
UIEs, which wastes a large amount of information. InferLoc significantly improves the usage of
available information, thus improving localization accuracy to a greater extent. Existing meth-
ods mainly separate the disambiguating and the localization phases. InferLoc conducts these two
tasks jointly. Overall, InferLoc advances itself by utilizing general kinds of UIEs, working in 3D,
adding inferred edge lengths, noise tolerance, independent of handcrafted regulations, and jointly
edge length and node location learning. Experiments also show that InferLoc not only remarkably
improves location accuracy but also dramatically improves the efficiency of graph optimization.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:6 X. Bai et al.

Table 2. Summarization of Abbreviations

Abbreviation Full Name Abbreviation Full Name

UAV Unmanned aerial vehicle SGC Special graph component
UIE Unmeasured but inferable edge BF G Basic flipping graph

UDG Unit disk graph EF G Extended flipping graph
EIL Existence of intersecting line NF C Non-flipping component
NEI Negative edge inference RE Residual error

Fig. 2. Example of rigid graph that has two realizations in R2 and R3.

The mined hypothesized knowledge significantly reduces the number of iteration steps in graph
optimization.

3 PROBLEM MODEL AND ALGORITHM ARCHITECTURE

The underlying problem of network localization based on inter-node distance measurements is
generally modeled as a graph realization problem [14]. This section describes the problem model
and some basic concepts. For the convenience of readers, the abbreviations used in the article are
summarized in Table 2. Only the generic graph is considered. Note that a graph is generic if the
vertex coordinates are algebraically independent over the rationals [33].

A distance graph is denoted by G (V ,E, d) in Rd (d = 2 or 3), where V represents the agents
and d represents the partially measured distance matrix. Note that the distance measurements are
noisy. An edge (i, j) ∈ E represents a distance measurement between agent i and j. The goal is to
calculate the node coordinates X = {xi |i ∈ V } so that the calculated distances ‖xi − x j ‖, (i, j) ∈ E
are as consistent as possible with the distance measurements di j ∈ d. The problem can be
formulated as follows.

X ∗ = arg min
X

∑
(i, j)∈E

(‖xi − x j ‖ − di j)
2 (1)

3.1 Unmeasured but Inferable Edges

Notice that even if (i, j) � E (i.e.,di j � d), we can still get some information from these unmeasured
edges. Even if the graph is not global rigid (i.e., cannot be realized uniquely [34]), it may still
be restricted to only a limited number of discrete realizations [35, 36] when it satisfies the rigid
condition. Since the number of graph realizations is limited, the possible lengths of an unmeasured
edge in the rigid subgraphs must be limited. As an example shown in Figure 2, both the 2D graph in
Figure 2(a) and the 3D graph in Figure 2(b) have only two possible realizations given the measured
edge constraints. So the unmeasured edge (A,D) in Figure 2(a) and edge (D,E) in Figure 2(b) have
only two possible lengths in all possible realizations. Such a phenomenon exists widely in more
complex graphs. For the edge where this phenomenon exists, we call it a UIE.

Definition 1 (Unmeasured but Inferable Edge). An unmeasured edge ¯(i, j) between node i and j
is called an unmeasured but inferable edge (UIE) in G if it satisfies the following conditions:

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:7

(1) The unmeasured edge has a finite number of possible lengths in G.
(2) All the possible lengths of the unmeasured edge are inferable.

Definition 1 describes the attributes of a UIE, but it cannot serve as a method to find a UIE.
Before a method is given, we give some definitions to present the method clearly.

Definition 2 (Rigid Graph). A graph is rigid if and only if it contains a spanning Laman Graph
[37] as a subgraph.

Definition 3 (Redundant Rigid Graph). A graph G (V ,E, d) with realization in R2 and R3 is redun-

dantly rigid if and only if it remains rigid after the removal of any one edge (i, j) ∈ E.

Theorem 4 proposes a sufficient condition to identify UIEs.

Theorem 4. InR2, considering a generic graph G, suppose a graph component C ∈ G is redundant

rigid, then all the unmeasured edges in C are UIEs.

Proof. A graph C is redundant rigid if it remains rigid after removing any single edge from it,
and this component does not have flex ambiguities. By a maximum flow algorithm [38], we can
find all the two-vertex cuts in G that can cause flipping ambiguities, which are called the flipping

separators. Suppose k separators can cause flipping ambiguity of C. Then the total number of
possible realizations of C is 2k . All of these realizations are theoretically inferable by stitching
the global rigid components on different sides of the flipping axes. So the possible lengths of each
unmeasured edge in C have a limited number and are inferable. �

Note that Theorem 4 gives only a sufficient condition. Some UIEs can be found by detecting
redundant rigid components. Although the Pebble Game algorithm can detect the redundant rigid
components in polynomial time [37], calculating all the UIEs is still time consuming. UIEs can be
further found in simpler SGCs, in which the possible lengths can be calculated efficiently, which
will be detailed in Section 4. Moreover, not all kinds of UIEs can contribute to network localiza-
tion. Therefore, we first suppose we have some methods to efficiently identify a set of UIEs and
present the InferLoc model. Then we theoretically investigate what kinds of UIEs can contribute
to improving sparse network localization. Algorithms to solve the joint optimization problem will
be presented in Section 5.

3.2 InferLoc Model Using Hypothesized Lengths of UIEs

InferLoc exploits that a UIE may have different possible lengths in different rigid subgraphs con-
taining it. This forms multiple sets of possible lengths for the same UIE. To distinguish from

(i, j) ∈ E, ¯(i, j) is used to indicate a UIE between i and j. We call the subgraphs in which ¯(i, j)

has a limited number of possible lengths the Special Graph Components (SGCs) of ¯(i, j), de-

noted by a graph set Si j . The number of possible lengths of ¯(i, j) inGl ∈ Si j is denoted by nl . Then
the optimization objective in Equation (1) is rewritten as Equation (2).

X ∗ = arg min
∑

(i, j)∈E

(‖xi − x j ‖ − di j)
2

+
∑

(̂i, j)∈U

∑
Gl ∈Li j

nl∑
k=1

ωl
k

(
‖xi − x j ‖ − d̂k

i j

)2

s .t .
⎧⎪⎨⎪⎩

∑nl

k=1 ω
l
k
= 1

ωl
k
= 0 or 1

∀¯(i, j) ∈ U,∀Gl ∈ Li j ,∀k = 1, ...,nl

(2)

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:8 X. Bai et al.

In Equation (2), U denotes the utilized UIEs. ωl
k
∈ {0, 1} is a decision variable determining

which hypothesized length in the lth SGC is selected in the result. The selection is exclusive (i.e.,∑nl

k=1 ω
l
k
= 1), so the constraints of UIEs are called switchable constraints. We will introduce the

designed method to make ωl
k

differentiable in Section 5.

Remark 1. The InferLoc model does not use UDG constraints. Therefore, it does not need to
assume ‖xi − x j ‖ > R, if (i, j) � E.

3.3 What Kind of UIE Can Contribute?

Since many UIEs can be selected, the first question is what kind of UIE can contribute to the

localization in Equation (2). Since a ¯(i, j) may be in multiple SGCs, letGl denote an SGC component

where multiple possible lengths of ¯(i, j) are inferred. It can contribute to the localization only when
¯(i, j) can be disambiguated in the final optimization result in the InferLoc model. We claim that
not all UIEs can be disambiguated by joint optimization.

Theorem 5. In a generic graphG (V ,E, d), suppose ¯(i, j) ∈ Gl , only when i and j are also connecting

to other nodes outside Gl in G, can the ¯(i, j) be disambiguated by the joint optimization.

Proof. Suppose i and j are not connecting to any other node outside Gl , then all the edge con-

straints that restrict the length of ¯(i, j) are inGl . Since multiple possible lengths of ¯(i, j) are inferred
based on edges in Gl , and no additional outside information can help to resolve the ambiguities

of the lengths of ¯(i, j), the length ambiguity of ¯(i, j) cannot be resolved by the edge information
in G. �

3.4 Penalty of Inconsistency

Based on Lemma 5, UIEs that are in multiple overlapping SGCs are possible to disambiguate. They
contribute to localization by adding costs to the objective if inconsistent lengths are selected in
different subgraphs. In Equation (2), the hypothesized lengths of UIEs in multiple SGCs add two
kinds of costs to the objective: (1) residue cost, which evaluates the inconsistency with the predicted
edge length ‖xi − x j ‖, and (2) selection cost, which evaluates the inconsistency for UIE length
selection in different SGCs. Ideally, suppose the node locations are correctly calculated and the
hypothesized lengths are correctly selected. In that case, the selected UIE lengths should be well
consistent with the correct node locations, namely

∑
Gl ∈Li j

∑nl

k=1 ω
l
k

(‖xi − x j ‖ − d̂k
i j)

2 ≈ 0. In such
cases, the different SGCs agree at a common edge length.

Otherwise, if the hypothesized lengths for ¯(i, j) are wrongly selected in some SGCs in the final
optimization result, the wrong selection will incur additional selection costs. For clarity, we replace

Li j by L for a specific ¯(i, j). Suppose {d̂1, d̂2, . . . d̂L } are the selected lengths of the L SGCs for a

specific ¯(i, j) in the optimization result. Theorem 6 proves the relationship between selection cost
and the difference among the selected lengths.

Theorem 6. The cost added to the objective by the wrong selection is denoted as P, and P ≥∑L−1
m=1

∑L
n=m+1 (d̂m−d̂n)2

L
.

Proof. Given the length selection in L SGCs, the cost of ¯(i, j) in Equation (2) is P = (‖xi −x j ‖ −
d̂1)2 + · · ·+ (‖xi − x j ‖ − d̂L)2. By considering ‖Xi −X j ‖ as one variable, P takes the smallest value

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:9

when ‖xi − x j ‖ =
∑L

m=1 d̂m

L
. Thus, we have the following.

P ≥ �
�

∑L
m=1 d̂m

L
− d̂1

�
	

2

+ · · · + �
�

∑L
m=1 d̂m

L
− d̂L

�
	

2

=
L
∑L

m=1 (d̂m)
2 − (

∑L
m=1 d̂m)2

L

=
(L − 1)

∑L
m=1 (d̂m)

2 −∑L−1
m=1 2d̂m (d̂m+1 + · · · + d̂L)

L

=

∑L−1
m=1

∑L
n=m+1 (d̂m − d̂n)2

L
�

A square-level penalty regarding the length difference will be added to the optimization objec-
tive if the selected hypothesis lengths in different subgraphs are inconsistent in the final result.
The larger the length differences across different SGCs, the higher a penalty this UIE adds. Note
that the exclusive selection weight ωl

k
is the length selection variable in different subgraphs. So

whatever the estimated edge length ‖xi −x j ‖ is, the penalty of inconsistency will tend to push the
selection variables to select consistent UIE lengths in different SGCs. Using the idea in the next
section, we seek an effective method to identify multiple SGCs for a UIE.

3.5 Special Graph Components

The efficiency is also essential for InferLoc, determined by the method to find the UIEs. Although
UIEs can be found by detecting redundant rigid components according to Theorem 4, such a
method detects too many UIEs. It is unnecessary to exhaustively detect all UIEs because adding a
portion of additional internode distance information can significantly improve the network local-
ization performance in sparse networks. Further, according to Lemma 5, not all UIEs can contribute
to localization. To detect UIEs efficiently and effectively, we propose to detect and infer possible
lengths of UIEs in three kinds of particular graph components. These three SGCs can be used
independently or together.

4 UIE EXTRACTION AND INFERENCE

This section first introduces the methods to detectBF G and EF G (extended flipping graph) using
local information and the UIE edge length inference methods in BF G and EF G. Direct consis-
tency checking for length voting in BF G is also presented. Then, the partition and evaluation of
NF Cs (non-flipping component) and the approximated UIE edge length inference in NF Cs are
presented.

4.1 Edge Length Inference in BFG
BF G proposed in 2D by Ping et al. [20] is an efficiently detected subgraph to infer possible lengths
for UIEs. We extend it to 3D.

Definition 7 (Basic Flipping Graph in 2D [20]). A quadrangle with four vertices and five edges,
which is rigid but not global rigid in R2, is called a basic flipping graph (BF G) in 2D, whose
example is shown in Figure 2(a).

Definition 8 (Basic Flipping Graph in 3D). A hexahedron with five vertices and nine edges, which
is rigid but not global rigid in R3, is called a basic flipping graph (BF G) in 3D, whose example is
shown in Figure 2(b).

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:10 X. Bai et al.

Note that each BF G has two and only two possible ambiguous realizations [20].

4.1.1 Detecting Qualified BF Gs. BF Gs can be easily detected using local information. For an

unmeasured edge ¯(i, j), if i and j share two neighbors and the two neighbors are connected, then
these four vertices form a BF G in 2D. Similarly, if i and j share three neighbors and the three
neighbors are connected, then the subgraph of these five vertices forms a BF G in 3D.

Many BF Gs can be found in the graph. A selection method is further proposed to select the
reliable BF Gs whose formations are less impacted by the ranging noises. We refer to the “ro-
bust quadrilateral” [23] to extract only the qualified BF Gs . Each BF G can be divided into two
sub-triangles. A method to select the qualified BF Gs in R2 and R3 is given in Definition 9 and
Definition 10, respectively.

Definition 9 (QualifiedBF G inR2 [23]). ABF G is called qualified if the edge and sub-triangles
in the BF G satisfy the condition that

dmin (sinθmin)2 > σ ,

where dmin is the shortest edge and θmin is the minimal angle in the sub-triangles.

Definition 10 (QualifiedBF G inR3). ABF G is called qualified if the area and sub-tetrahedrons
in the BF G satisfy the condition that

smin (sinαmin)2 > γ ,

where smin is the smallest area and αmin is the minimal dihedral angle in the sub-tetrahedrons.

4.1.2 Possible Length Inference. Given a qualified BF G in 2D or in 3D, the UIE related to this
BF G has only two possible lengths, which are denoted as xT1 and xT2 . Denote the five measured
edges in the BF G as a,b, c,d, e as shown in Figure 3(a). The two possible lengths for the UIE can
be calculated using the geometrical method.

xT1 =

√
a2 + c2 − 2ac × cos (α + β)

xT2 =

√
a2 + c2 − 2ac × cos (

α − β

)

α =arc cos

(
a2 + e2 − b2

2ae

)

β =arc cos

(
c2 + e2 − d2

2ce

)
(3)

In 3D, denote the nine measured edges in the BF G as a,b, c,d, e, f ,д,h, i as shown in Figure 3(c)
and Figure 3(d). The plane ABC is shown in Figure 3(e).O is the projection of node D on the plane,
and O ′ is the projection of node E on the plane. ρ1, ρ2, l1, l2 represent the four calculated edges.V1

denotes the volume of the tetrahedron DABC , andV2 denotes the volume of the tetrahedron EABC .
h1 and h2 represent the height of DABC and EABC, respectively. Then the two possible lengths in
3D are as follows:

xT1 =

√
ω2 + (h1 + h2)2

xT2 =

√
ω2 + (h1 − h2)2,

(4)

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:11

Fig. 3. Calculation of the ambiguous realizations in BF G.

where

ω1 =

√
ρ2

1 + ρ
2
2 − 2ρ1ρ2 cos(θ1 − θ2),ω2 =

√
ρ2

1 + ρ
2
2 − 2ρ1ρ2 cos(θ1 + θ2)

ρ1 =

√
d2 − h2

1, ρ2 =

√
д2 − h2

2

θ1 = arc cos

(
ρ2

1 + a
2 − l2

1

2ρ1a

)
,θ2 = arc cos

(
ρ2

2 + a
2 − l2

2

2ρ2a

)

l1 =
√
f 2 − h2

1, l2 =
√
i2 − h2

2

h1 =
3V1

S
,h2 =

3V2

S

V1 =
4d2e2 f 2 − d2D2

1 − e2E2
1 − f 2F 2

1 + D1E1F1

12
D1 = e2 + f 2 − c2,E1 = d

2 + f 2 − a2, F1 = d
2 + e2 − b2

V2 =
4д2h2i2 − д2D2

2 − h2E2
2 − i2F 2

2 + D2E2F2

12
D2 = h

2 + i2 − c2,E2 = д
2 + i2 − a2, F2 = д

2 + h2 − b2

S =
√
p (p − a) (p − b) (p − c)

p =
a + b + c

2
.

(5)

Remark 2. When doing 3D calculations, it is necessary to judge whether the projection O of
node D on the plane ABC is inside the triangle ABC or outside the triangle ABC according to the
edge information:

(1) If O is inside the triangle ABC , ω = ω1.
(2) If O is outside the triangle ABC , ω = ω2.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:12 X. Bai et al.

4.1.3 Directly Length Voting by Consistency Checking. If k ≥ 2 BF Gs are detected regarding
one UIE, 2k possible lengths are obtained. Because the UIE has a ground truth length, each BF G
should have an inferred length close to this ground truth. Because each BF G has two inferred
lengths, if one of them in eachBF G finds agreement while the other cannot find consistent parties,
it is highly suggested that the agreed lengths are measurements from the ground truth. Suppose
each BF G has a highly consistent inferred length with a difference less than ε, and the other
inferred length is obviously different from the others (with a difference larger thanσ , where ε
 σ).
In this case, we can confidently vote the consistent length of the k BF Gs as the inferred length
of the UIE without inputting them into the joint optimization model. The length of the UIE can be

inferred directly by d = d1+d2+· · ·+dk

k
, where d1 to dk are the consistent lengths in the k BF Gs .

ALGORITHM 1: Edge Length Inference in BF G
1 Input: G = (V ,E, d)

2 for (i, j) ∈ E do

3 find all N (i, j) = N (i) ∩ N (j);

4 if |N (i, j) | � 2 then

5 for {s, t } ⊆ N (i, j) do

6 if (s, t) � E && dminsin
2θmin > σ then

7 U = U ∪Ust ;

8 {BF G (s, t)} = {BF G (s, t)} ∪ {vi ,vj ,vs ,vt };
9 calculate the length of Ust by Equation (3);

10 D (s, t) = D (s, t) ∪ {xT1 ,xT2 };

11 Output: U, D(U), {BF G (U)}
.

The whole algorithm of qualified BF G detection and UIE length inference in R2 is shown in
Algorithm 1. The complexity is O (mΔ2), where m is the number of edges and Δ is the maximum
node degree. Note that Δ
 n in sparse graphs. The algorithm in R3 is similar to Algorithm 1,
which will not be repeated.

4.2 Edge Length Inference in EF G
Definition 11 (Extended Flipping Graph). A graph that can be decomposed into multiple BF Gs

is called an extended flipping graph (EF G).

Examples for EF G in R2 and R3 are shown in Figure 4. For simplicity of edge inference, the
minimal EF G, which can be decomposed into two BF Gs , is considered in both R2 and R3.

The minimal EF G can be detected using local information. For two BF Gs in R2, if BF Gi and

BF G j share a connected triangle{a,b, c} and edge ¯(i, j) is unmeasured, then these five vertices
form a EF G in R2. Similarly, if BF Gi and BF G j share a connected tetrahedron{a,b, c,d } and

edge ¯(i, j) is unmeasured, then these six vertices form a EF G in R3. Considering the existence of
noise, a minimal EF G is called qualified if its two BF Gs are qualified BF Gs . The number of
ambiguous realizations and the calculation method are shown in Theorem 12.

Theorem 12. In R2, considering a minimal EF G as shown in Figure 4, there are four and only

four distinct realizations that satisfy the seven edge constraints. Without loss of generality, the possible

lengths of the UIE ıAE using the edge notations in Figure 4 can be calculated as follows. The calculation

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:13

Fig. 4. Four ambiguous realizations in the minimal EF G.

method in 3D is shown in Equation (17).

xT1 =

√
f 2 + д2 − 2f д cos(α + β)

xT2 =

√
a2 + j2 − 2aj cos(θ − ϕ)

xT3 =

√
f 2 + д2 − 2f д cos(β − α)

xT4 =

√
k2 + д2 − 2kд cos(θ + φ)

α = arc cos
f 2 + d2 − b2

2f d
, β = arc cos

d2 + д2 − h2

2dд

θ = arc cos
a2 + e2 − b2

2ae
,ϕ = arc cos

e2 + j2 − h2

2ej

φ = arc cos
e2 + k2 − h2

2ek

(6)

Similar derivations can be applied in R3, shown in the appendix. The detection of the qualified
EF Gs is based on the BF G detection result. By Algorithm 1, qualified BF Gs can be obtained
first. Then, for any two qualified BF Gs (BF G (s,p) and BF G (s,q)) whose separators share a
common vertex s , a qualified EF G can be formed if p ∈ BF G (s,q) and q ∈ BF G (s,p).

The whole process of EF G detection and UIE length inference in R2 is given in Algorithm 2.
The process is applied for every two BF Gs obtained in Algorithm 1, so the complexity is O (N 2),
where N is the number of BF Gs. The algorithm in R3 is similar to Algorithm 2, which will not
be repeated.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:14 X. Bai et al.

Fig. 5. Two different stitching methods.

ALGORITHM 2: Edge Length Inference in EF G
1 Input: {BF G (U)}
2 for {BF G (s,p),BF G (s,q)} ∈ {BF G} do

3 if p ∈ BF G (s,q) and q ∈ BF G (s,p) then

4 {EF G (i, j)} = {EF G (i, j)} ∪ {BF G (s,p) ∪ BF G (s,q)};
5 Calculate possible lengths of Ui j by Equation (6);

6 D(i, j) = D(i, j) ∪ {xT1 ,xT2 ,xT3 ,xT4 };

7 Output: U, D, {EF G (U)}

4.3 Edge Length Inference Across NF Cs

In addition to the locally detected UIEs in BF Gs and EF Gs , we consider UIEs across NFGs. A
three-vertex-connected component is an NF C in R2, and a four-vertex-connected component is
an NF C in R3. This is because flipping ambiguities will not happen in (d + 1)-vertex-connected
components in Rd , which is proved in the work of Ping et al. [20]. TheNF Cs can be partitioned
by an SPQR-tree algorithm [38] in R2 and can be partitioned by a k-vertex-connected-component
partition algorithm [39] in higher dimensions.

Considering two three-vertex-connected componentsC1 andC2 in R2, suppose there is a binary
cut {v1,v2} separating them as shown in Figure 5. We call the binary cut {v1,v2} (with the edge
(v1,v2) if the edge exists) a flipping separator.

Definition 13 (Flipping Separator). Given a rigid graph G = (V ,E) in Rd , if there is a d-vertex
cut set V ′, where |V ′| = d and G[V \V ′] is disconnected, we call G[V ′] a flipping separator.

There are two ways to stitch the twoNF Cs in the final graph realization, namely flat stitching
and flipping stitching, which are shown in Figure 5(b) and (c). So for two arbitrary vertices i ∈
C1, j ∈ C2 and i � {v1,v2} && j � {v1,v2}, ¯(i, j) has two possible lengths. Such UIEs are called
approximated UIEs because NF Cs may still contain flex ambiguities. Although the global rigid
components can confidently exclude flex ambiguities, they are generally distributed sparsely in
the sparse graphs and rarely share a flipping separator. So UIEs can hardly be found between
global rigid components. To exploit UIEs between components,NF Cs and approximated UIEs are
utilized. UIEs are extracted between NF Cs, and the potential lengths are inferred geometrically.

The critical steps of NF C detection, UIE selection, and UIE length inference are as follows:

(1) Components detection: SPQR tree is applied in R2 and 4-VCC is applied in R3 to find NF Cs
and flip separators between NF Cs.

(2) Components realization: For each NF C, the component-based graph realization method
ARAP [13] is applied to realize the local formation of each component.

(3) Components evaluation: Every NF C is evaluated by the realization residue. Only the com-
ponents that meet the standards will be considered to extract UIEs.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:15

(4) Edge length inference: Finally, in any two qualified NF Cs sharing a separator, two nodes
with the largest hop count in the twoNF Cs are selected to generate a UIE. The two possible
lengths of the UIE are calculated by stitching the component realizations in two different
ways (i.e., flat stitching and flipping stitching).

Residual Error (RE) is adopted as the metric for evaluating the realization quality of a com-
ponent. The RE of each component can be evaluated by Equation (7), where REk represents the
standard residual of the kth component. If REk > εk (a threshold), the component is not qualified
for generating UIEs since its local realization is not accurate enough.

REk =

∑
(i, j)∈Ek

‖d̂i j − d̃i j ‖2

|Ek |
(7)

Edge inference is conducted by stitching one component in two ways across the flipping axis
with the other component. The component C1 is assumed to be fixed, so the coordinates of j (i.e.,
x j) are fixed. There are two possible coordinates for i , where are denoted as x1

i and x2
i , respec-

tively, which are symmetrical about the flipping separator {v1,v2}. Therefore, the two possible

edge lengths for ¯(i, j) are calculated as follows. For space limitation, how x1
i and x2

i are calculated
will be omitted.

d1
i j =

���x j − x1
i
���

2
,d2

i j =
���x j − x2

i
���

2
(8)

5 INFERLOC

After extracting and inferring possible lengths for the qualified UIEs, the possible lengths are uti-
lized as hypothesized edge constraints to be input into the InferLoc model Equation (2). Then the
problem is how to solve the joint optimization problem.

A difficulty is that the 0/1 variable ωl
k

is not differentiable and cannot be directly optimized
by graph optimization methods like Levenberg-Marquardt. We use a continuous function of a
continuous variable sl

i j ∈ R to replace each 0/1 variableωl
k

. The set S = {sl
i j } is called the continuous

selection variables. A switching functionΨ (s) is utilized to map a continuous variable s ∈ R to be
0 or 1, which finishes the length selection. Then Equation (2) is rewritten as follows:

X ∗, S∗ = arд min
∑

(i, j)∈E+Uc

‖d̂i j − d̃i j ‖2Ωi j

+
∑

(̂i, j)∈U

∑
l ∈L

nl∑
k=1

Ψk
(
sl

i j

) ���d̂k
i j − d̃i j

���
2

Λi j
,

(9)

where E represents the measured edges, U represents the selected UIEs, and Uc represents the di-
rectly voted well-consistent UIEs in BF Gs . d̃i j denotes the Euclidean distance calculated by the
estimated coordinates (i.e., d̃i j = ‖xi −x j ‖). The function ‖ · ‖2

Ω
represents the squared Mahalanobis

distance with covariance Ω. For the UIE with two possible lengths, we let Ψ2 (s) = 1 − Ψ1 (s).
For the UIE with multiple possible lengths, a switching function that meets the requirements
(
∑nl

k=1
Ψk (s) = 1) can be constructed by transforming the function linearly. The optimization

problem in Equation (9) can be solved by the Levenberg-Marquardt algorithm using iterative opti-
mization. Two switching functions are considered. The sigmoid function and its derivative are as
follows.

Ψsiдmoid (si j) = siд(si j) =
1

1 + e−si j

siд′(si j) = siд(si j) · (1 − siд(si j))
(10)

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:16 X. Bai et al.

The derivative is non-zero and easy to compute. However, the sigmoid function asymptotically
converges toward 0 and 1 but never exactly reaches those values. As shown in Equation (11), a
piecewise linear function is also investigated.

Ψ l inear (si j) : R→ [0, 1] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 si j < −0.5

si j + 0.5 −0.5 � si j � 0.5

1 si j > 0.5

(11)

Ψ l inear shows better convergence speed in experiments than Ψsiдmoid , because the gradient
�Ψ l inear is 0 when theΨ l inear approaches 0 and 1 and the gradient�Ψ l inear = 1 is constantly steep
when theΨ l inear between 0 and 1, which speeds up the convergence. The Levenberg-Marquardt
iteration algorithm is used to solve the InferLoc model Equation (9). Given an initial state X0, the
quadratic objective can be approximated by first-order Taylor approximation. The process to solve
Equation (9) by the Levenberg-Marquardt algorithm is expressed as follows:

ΔX = − (H + μI)−1 b

X = X + ΔX ,
(12)

where μ represents the damping coefficient, I is the identity matrix, H = JTΩJ is the Hessian matrix,
and J is the Jacobi matrix. J can be expressed in a two-block form. The first block Jd is the Jacobi
matrix about the measurements, and the second block Js is the Jacobi matrix about the variables s
(i.e., J = (Jd , J s)T).

6 PERFORMANCE EVALUATION AND ANALYSIS

Simulations are conducted in Matlab2020b and AirSim [40], a 3D simulation platform specifically
designed for UAV networks. The code runs on a Windows 11 Intel Core i5-10210U CPU @ 1.60
GHz. In simulations, n nodes are deployed randomly in L × L areas in 2D and L × L × L areas in
3D. The sparsity of the measurement graph is mainly controlled by the maximum ranging radius
r . Two nodes can measure inter-distance within the ranging radius r . For L = 100, we vary r in the
range [10, 20] to make the average node degree about 3 to 7, which is highly sparse and is sparser
than the experiment settings of existing works [12, 13, 20]. The ranging noise is assumed zero-
mean Gaussian distributed (Ω ∼ N (0,σ 2)). The σ varies in [1, 5]. For localization error evaluation,

Mean Square Error (MSE) (i.e., e =
∑n

i=1 ‖xi−x̂i ‖
n

) is used, where xi is the ground truth and x̂i is
estimation result of InferLoc.

6.1 Compare Contributions of BF G, EF G, and NF C
We first visualize the contributions ofBF G, EF G, andNF C in InferLoc. For clarity, a small-scale
sparse network of 50 nodes with r = 18 and σ = 5 is instantiated in Figure 6. The blue diamonds
represent the ground truth locations, and the red star markers show the localization results. The
gray lines are measured edges, and the green lines show localization errors. The shorter the green
lines, the more accurate the localization results are.

Figure 6(a) shows the result of G2O in a 2D network, which has large errors. Figure 6(b) through
(d) show the results of InferLoc using only the UIEs in BF G, EF G, andNF C, respectively. The
yellow lines represent the correctly inferred UIEs in different kinds of subgraphs (i.e.,BF G, EF G,
and NF C, respectively). Num(C) is defined as the number of formation C. InferLoc infers more
UIEs in BF G and EF G than that in NF C. This is because Num(BF G) � Num(EF G) �
Num(NF C) in the same graph. So the location accuracies using UIEs in BF G and EF G are
better than those usingNF C. The inferred edge lengths are the longest inNF C. Figure 6(e) and
(f) compare the localization results of G2O and InferLoc in sparse 3D networks. It can be seen

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:17

Fig. 6. The error of G2O and InferLoc.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:18 X. Bai et al.

Table 3. Validity of BF G, EF G, and NF C InferLoc

MSE of G2O
BF G EF G NF C

S/N MSE S/N MSE S/N MSE
σ = 1 25.92 843/784 1.31 1,933/1,770 1.39 472/423 1.47
σ = 3 27.57 332/306 3.63 1,202/1,083 3.69 472/413 3.74
σ = 5 30.87 293/267 6.09 574/517 6.13 472/398 6.16

that the improvement of localization accuracy is more noticeable when utilizing InferLoc in 3D
networks because 3D network localization requires more dense edge information.

Table 3 further summarizes the validity of BF G, EF G, and NF C when the noise is differ-
ent. S/N represents the ratio of the number of UIEs to the number of correctly inferred UIEs with
different methods. For example, in the first row, the number of UIEs in BF G in 100 experiments
is 843 and BF G InferLoc can correctly infer 784 UEs. So all of the BF G, EF G, and NF C
InferLoc can correctly infer a significant portion of UIEs. A portion of UIEs cannot be correctly in-
ferred because of the similarity of ambiguous lengths. So even if the inference is wrong, it will
not significantly impact the positioning accuracy. The average MSE of each method is shown
in Table 3. The BF G, EF G, and NF C InferLoc all greatly outperform G2O in localization
accuracy.

6.2 Accuracy Comparison with Other Localization Algorithms

The average localization error of InferLoc is compared with the state-of-the-art network localiza-
tion algorithms G2O [8] and SMACOF [41], and component stitching based network localization
algorithms (designed for sparse networks), including ARAP [13] and WCS [12]. The cumulated den-
sity functions of localization errors with different settings are shown in Figure 7 when σ varies in
{1, 3, 5} and r varies in {16, 20}.

We can see that G2O and SMACOF are sensitive to network sparsity compared with the com-
ponent stitching methods. ARAP and WCS show robustness to network sparsity but still have
significant errors when the network is highly sparse. InferLoc provides the best accuracy when
the network is sparse. It also provides better accuracy in all settings for using the unmeasured
edge information to deal with the lack of constraints in sparse networks.

6.3 Comparison with State-of-the-Art Methods in Sparse Networks

We visualize the comparison of InferLoc with state-of-the-art methods (G2O [8], ARAP [13], WCS
[12], and Ping et al. [20]) for sparse network localization. Three sparse networks, which are skele-
tons of the letters “R,” “U,” and “C” are generated, and the localization errors of these four methods
are calculated and visually compared.

It can be seen that G2O (Figure 8(a)) and ARAP (Figure 8(b)) both show significant localization
errors in such sparse networks where each node has only a few neighbors. The reason is that G2O
is not specially designed for sparse networks and does not have the generalized ability to identify
and disambiguate flipping ambiguity. The edge inference of ARAP in the patch is ineffective in
these graphs since many nodes are on the boundary, so it has significant errors. WCS (Figure 8(c))
performs better than G2O and ARAP but still has significant errors. Ping et al. (Figure 8(d)) in-
fer negative edges, which shows great performance improvement, but the errors are still notable.
InferLoc (Figure 8(e)) shows superior performance improvement over the other four methods in
these sparse networks. The results validate the effective utilization of UIEs in InferLoc.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:19

Fig. 7. The location error of different algorithms for networks with different connectivity and noise levels.

6.4 Accuracy for Sparse Formation Calculation

We further conduct formation tracking experiments in 3D networks, where the network topology
varies to be sparser and sparser over time. Formation tracking simulations are conducted in AirSim
[40], a UAV network simulator built on Unreal Engine. The 3D environment is created in Unreal
4.0. In the simulation, the formation of UAVs changes from a dense network to a sparse network.
Initially, 50 UAVs are deployed randomly in a small 3D area, forming a dense network. Then each
UAV begins to move randomly in each time slot. Due to random movement, the UAV network will
become increasingly sparse for Brownian motion. The network formations at different time slots
are shown in Figure 9, which are becoming increasingly sparse.

The localization algorithms are applied to calculate the UAV network topology when the
sensing radius and ranging noises are set differently. In particular, we evaluate the cases when
(r = 16,σ = 3), (r = 16,σ = 5), (r = 20,σ = 3), and (r = 20,σ = 5). The network topologies dur-
ing 50 time slots are calculated using different algorithms in each setting. The results are shown
in Figure 10(a) through (d). InferLoc performs best in all of these settings than in the other four
methods. When T < 30, all methods perform better since the network has good density. When
T > 30, the network becomes increasingly sparser, and InferLoc shows remarkably better robust-
ness and accuracy than the other methods. Benefiting from edge inference, InferLoc shows much
smaller error and variance than the other four methods.

6.5 Performance in Large-Scale Sparse Networks

To verify the effectiveness of InferLoc in large-scale networks, we test the networks with nodes
n = 100, 200, 300, 400, and 500, respectively, and the results are shown in Table 4. σ is the variance
of ranging noises. For each setting ofn, we calculate and average the performances of 100 randomly

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:20 X. Bai et al.

Fig. 8. The networks of shapes “R,” “U,” and “C.”

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:21

Fig. 9. The simulation environments by AirSim for formation tracking.

Fig. 10. The location error of different algorithms for networks with different connectivity and noise levels.

generated different graphs. We compare the average localization errors with that of the G2O [8]
algorithm. The results show that InferLoc achieves significantly fewer localization errors than G2O
in all network scales and noise ratio settings. The errors are reduced by more than 90% compared
with G2O.

G2O has significant localization errors because, in sparse networks, even one wrong flipping can
cause significant localization errors in the whole graph. This problem becomes more significant as
the sparseness increases. InferLoc can infer many UIEs to add additional constraints and to identify
the ambiguity of flipping. Therefore, InferLoc can provide correct guidance for graph formation
calculations. Table 3 shows that the number of UIEs inferred in a network of 50 nodes can be up
to several hundred. As the size of the network increases, the number of correctly identified UIEs
increase with the network size accordingly. The knowledge provided by these UIEs helps reduce
localization errors significantly. We can see from Table 4 that as the network size increases, the
localization errors of G2O increase, but because more UIEs can be identified in larger size sparse
networks, the network scale impacts the localization errors of InferLoc less. Therefore, InferLoc
achieves better localization accuracy improvement in larger networks.

6.6 Computational Efficiency Compared to G2O

In this section, we compare the computational efficiency of InferLoc with that of G2O. The compu-
tational efficiency will be evaluated in terms of the time used before the algorithms converge, as

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:22 X. Bai et al.

Table 4. Effectiveness of InferLoc in Large-Scale Networks

n = 100 n = 200 n = 300 n = 400 n = 500

G2O InferLoc G2O InferLoc G2O InferLoc G2O InferLoc G2O InferLoc
σ = 1 27.39 1.05 35.28 1.21 47.65 1.32 69.33 1.33 79.15 1.32
σ = 3 45.57 3.53 52.37 3.49 65.21 3.74 82.45 3.88 89.37 3.91
σ = 5 66.87 6.31 78.81 6.77 88.02 6.93 92.31 7.02 99.97 7.11

Fig. 11. The average number of iterations required by G2O and InferLoc under different network scales and
noise levels.

well as the number of iterations. We repeat the experiment 100 times and take the average on the
running time (or the number of iterations) in each experiment setting. The iteration is completed
if the change between two iterations is less than a tiny threshold. Otherwise, the optimization will
stop when it runs 1,000 iterations.

Figure 11 compares the average number of iterations required by G2O and InferLoc under differ-
ent parameter settings. It is easy to see that the average number of iterations required by InferLoc
in the sparse network (e.g., in networks of 150 nodes with r ≤ 16) can be decreased almost hun-
dreds of times more that of the G2O algorithm. InferLoc can often converge within 10 iterations,
and the average number of iterations of InferLoc is robust to different noise levels, ranging radius,
and graph scales.

However, we should also note that when the graph is less sparse (e.g., in the networks of 150
nodes with r ≥ 17), the average number of iterations can be very close to G2O. UIEs become less
valuable in dense networks since the measured edges have provided enough constraints.

Benefiting from the substantial reduction in the number of iterations, Figure 12 shows that
the average running time required by InferLoc in sparse networks is also significantly reduced
compared with that of G2O. InferLoc reduces the overall running time from several seconds to

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:23

Fig. 12. The average running time required by G2O and InferLoc under different network scales and noise
levels.

Fig. 13. The average number of iterations re-
quired by G2O and InferLoc in different scale net-
works.

Fig. 14. The average running time required by
G2O and InferLoc in different scale networks.

less than 1 second in the networks with 50 nodes, and from dozens of seconds to 1 to 2 seconds
with 100 and 150 nodes in sparse networks.

We also evaluated the impacts of graph scale and noise on the number of iterations and running
time. The results are shown in Figures 13 through 16. In the experiments of Figure 13 and Figure 14,
we set σ = 3 and r = 14 and vary n from 50 to 500. Figure 13 shows that InferLoc needs fewer
iterations in sparse network settings (i.e., when n is in the range of 50 to 200). When n > 200, the
network becomes dense. The number of iterations required by InferLoc becomes close to that of
G2O.

Figure 14 shows that the average running time of InferLoc is also much lower than that of G2O
in sparse networks withn ≤ 200. Its running time exceeds that of G2O whenn > 200 (i.e., when the

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:24 X. Bai et al.

Fig. 15. The average number of iterations required by G2O and InferLoc under different noise levels.

Fig. 16. The average running time required by G2O and InferLoc under different noise levels.

networks become dense). This is because much higher computation costs are needed to infer UIEs
in dense networks. However, these UIEs provide less help in reducing the number of iterations
since the measured edges are already very dense in these networks.

Figures 15 and 16 summarize the average number of iterations and running times of InferLoc
under different noise levels. They show that the computation efficiency of InferLoc is highly robust
to noise.

7 CONCLUSION AND DISCUSSION

This article presented InferLoc, a joint edge inference and network localization method to exploit
general UIEs for sparse network localization. It can deal with the cases that existing handcraft-
based methods cannot address and shows remarkable localization accuracy improvement in sparse
networks over existing state-of-the-art methods. In particular, it can reduce localization errors by
more than 90% and reduce convergence time by more than 100 times than that of the widely used
G2O-based methods in sparse networks. It theoretically investigates what kinds of UIEs can con-
tribute and designs a differentiable LM-based optimization framework to solve the joint optimiza-
tion problem. For generating UIEs efficiently, geometric methods to infer UIEs in BF G, EF G,
and NF C in both 2D and 3D networks were presented. We also proposed methods for selecting
qualified UIEs and direct voting methods for UIEs inBF Gs. Moreover, InferLoc is compatible with
various existing methods, such as the edge inference methods that cannot precisely infer the exact
edge length. In such cases, InferLoc can help infer the edge lengths through hypothesis-based joint
graph optimization.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:25

However, as shown in Figure 14, InferLoc is inefficient when the network is dense. In future
work, we will seek a more effective method to dynamically select the number of UIEs. InferLoc can
be adaptive to the network sparsity to improve computing efficiency while ensuring localization
accuracy. We will also explore InferLoc in graphs with bearing and distance measurements.

APPENDIX

A CALCULATION METHOD OF UIE IN 3D EF G
This section gives the calculation method of UIE in 3D EF G. In R3, considering a minimal EF G
as shown in Figure 4, there are four and only four distinct realizations that satisfy the 12 edge
constraints. Without loss of generality, the possible lengths of the UIEDF using the edge notations
in Figure 17(a) can be calculated as follows. The solution method appearing in Equation (5) will not
be repeated and handled directly according to the known variables. The length of edgeAF has two
possible lengths, denoted as AF1 and AF2. The lengths of OA,OB,OC , and OD can be calculated
according to Equation (5). BF and CF are measurements, so we use two vertices to represent the
length. The coordinates of nodes A, B, C , and D can be expressed as follows.

A (OA sinθ ,−OA cosθ , 0)

B (OB, 0, 0)

C (−OC sinα ,OC cosα , 0)

D (0, 0,OD)

θ =
π

2
− OA2 +OB2 −AB2

2OAOB

α = π − OB2 +OC2 − BC2

2OBOC

(13)

After having the coordinates of D, the main goal is to solve the coordinates of F . Therefore, the
coordinates of F can be set to F (x ,y, z). The following equations can be obtained according to the
edge passing through the node F .

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

BF 2 = (x −OB)2 + y2 + z2

CF 2 = (x +OC sinα)2 + (y −OC cosα)2 + z2

AF 2
1 = (x −OA sinθ)2 + (y +OA cosθ)2 + z2

AF 2
2 = (x −OA sinθ)2 + (y +OA cosθ)2 + z2

(14)

Solving Equation (14) can get Equation (15).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 = BF 2 −CF 2 −OB2 +OC2 sin2 α +OC2 cos2 α

L1 = −2 (OB +OC sinα) x + 2yOC cosα

L2 = −BF 2 +AF 2
1 +OB

2 −OA2 sin2 θ +OA2 cos2 θ

L2 = −2 (−OB +OA sinθ) x + 2yOA cosθ

L′2 = −BF 2 +AF 2
2 +OB

2 −OA2 sin2 θ +OA2 cos2 θ

LâĂŹ
2 = −2 (−OB +OA sinθ) x + 2yOA cosθ

(15)

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

8:26 X. Bai et al.

Fig. 17. The effect of establishing the coordinate system.

Solving the Equation (15) can then get all coordinates of F .

F1 (x1,y1, z1)

F2 (x1,y1, z2)

F3 (x2,y2, z3)

F3 (x2,y2, z4)

⎧⎪⎨⎪⎩
x1 =

OA cos θ L1−OC cos α L2
2(−OB+OA sin θ)OC cos α−2(OB+OC sin α)OA cos θ

y1 =
L1+(2OB+OC sin α)x

2OC cos α

⎧⎪⎨⎪⎩
x2 =

OA cos θ L1−OC cos α L′2
2(−OB+OA sin θ)OC cos α−2(OB+OC sin α)OA cos θ

y2 =
L1+(2OB+OC sin α)x

2OC cos α

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z1 =
√
BF 2 − (x1 −OB2) − y1

2

z2 = −
√
BF 2 − (x1 −OB2) − y1

2

z3 =
√
BF 2 − (x2 −OB2) − y2

2

z4 = −
√
BF 2 − (x2 −OB2) − y2

2

(16)

So the four possible lengths of DF are expressed as follows.

DF1 =

√
x2

1 + y
2
1 + (z1 − h)2

DF2 =

√
x2

1 + y
2
1 + (z2 − h)2

DF3 =

√
x2

2 + y
2
2 + (z3 − h)2

DF4 =

√
x2

2 + y
2
2 + (z4 − h)2

(17)

REFERENCES

[1] Yuanpeng Liu, Yunlong Wang, Jian Wang, and Yuan Shen. 2020. Distributed 3D relative localization of UAVs. IEEE

Transactions on Vehicular Technology 69, 10 (2020), 11756–11770.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

InferLoc 8:27

[2] Shuo Wang, Yongcai Wang, Xuewei Bai, and Deying Li. 2023. Communication efficient, distributed relative state
estimation in UAV networks. IEEE Journal on Selected Areas in Communications 41, 4 (2023), 1151–1166. DOI:http:
//dx.doi.org/10.1109/JSAC.2023.3242708

[3] Shuo Wang, Yongcai Wang, Deying Li, and Qianchuan Zhao. 2023. Distributed relative localization algorithms for
multi-robot networks: A survey. Sensors 23, 5 (2023), 2399. DOI:http://dx.doi.org/10.3390/s23052399

[4] Yongcai Wang, Tianyuan Sun, Guoyao Rao, and Deying Li. 2018. Formation tracking in sparse airborne networks.
IEEE Journal on Selected Areas in Communications 36, 9 (2018), 2000–2014.

[5] Zheng Yang, Yunhao Liu, and X-Y Li. 2009. Beyond trilateration: On the localizability of wireless ad-hoc networks. In
Proceedings of IEEE INFOCOM 2009. IEEE, Los Alamitos, CA, 2392–2400.

[6] Gabriele Oliva, Stefano Panzieri, Federica Pascucci, and Roberto Setola. 2015. Sensor networks localization: Extending
trilateration via shadow edges. IEEE Transactions on Automatic Control 60, 10 (2015), 2752–2755.

[7] Sayit Korkmaz and Alle-Jan van der Veen. 2009. Robust localization in sensor networks with iterative majorization
techniques. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE,
Los Alamitos, CA, 2049–2052.

[8] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. 2011. G2O: A general frame-
work for graph optimization. In Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA’11).
IEEE, Los Alamitos, CA, 3607–3613.

[9] H. Ping, Y. Wang, and D. Li. 2020. HGO: Hierarchical graph optimization for accurate, efficient, and robust network
localization. In Proceedings of the 29th International Conference on Computer Communications and Networks (ICCCN’20).
1–9. DOI:http://dx.doi.org/10.1109/ICCCN49398.2020.9209620

[10] Ananya Saha and Buddhadeb Sau. 2017. Network localization by non-convex optimization. In Proceedings of the 7th

ACM International Workshop on Mobility, Interference, and MiddleWare Management in HetNets. 1–6.
[11] Xiaoping Wang, Jun Luo, Yunhao Liu, Shanshan Li, and Dezun Dong. 2010. Component-based localization in sparse

wireless networks. IEEE/ACM Transactions on Networking 19, 2 (2010), 540–548.
[12] Tianyuan Sun, Yongcai Wang, Deying Li, Zhaoquan Gu, and Jia Xu. 2018. WCS: Weighted component stitching for

sparse network localization. IEEE/ACM Transactions on Networking 26, 5 (2018), 2242–2253.
[13] Lei Zhang, Ligang Liu, Craig Gotsman, and Steven J. Gortler. 2010. An as-rigid-as-possible approach to sensor network

localization. ACM Transactions on Sensor Networks 6, 4 (2010), 1–21.
[14] Tianyuan Sun, Yongcai Wang, and Deying Li. 2020. A survey and evaluation of graph realization algorithms. Acta

Automatica Sinica 46, 4 (2020), 613–630.
[15] Yuan Zhang, Shutang Liu, Xiuyang Zhao, and Zhongtian Jia. 2012. Theoretic analysis of unique localization for wire-

less sensor networks. Ad Hoc Networks 10, 3 (2012), 623–634.
[16] Z. Yang and Y. Liu. 2012. Understanding node localizability of wireless ad hoc and sensor networks. IEEE Transactions

on Mobile Computing 11, 8 (Aug. 2012), 1249–1260. DOI:http://dx.doi.org/10.1109/TMC.2011.122
[17] Mihai Cucuringu, Yaron Lipman, and Amit Singer. 2012. Sensor network localization by eigenvector synchronization

over the Euclidean group. ACM Transactions on Sensor Networks 8, 3 (2012), 1–42.
[18] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. 1990. Unit disk graphs. Discrete Mathematics 86, 1-3 (1990),

165–177.
[19] Onur Cagirici. 2016. Avoiding the flip ambiguities in 2D wireless sensor localization by using unit disk graph property.

arXiv preprint arXiv:1604.03396 (2016).
[20] Haodi Ping, Yongcai Wang, Deying Li, and Tianyuan Sun. 2020. Flipping free conditions and their application in

sparse network localization. IEEE Transactions on Mobile Computing 21, 3 (2020), 986–1003. DOI:http://dx.doi.org/10.
1109/TMC.2020.3015480

[21] Anushiya A. Kannan, Baris Fidan, and Guoqiang Mao. 2011. Use of flip ambiguity probabilities in robust sensor net-
work localization. Wireless Networks 17, 5 (2011), 1157–1171.

[22] Anushiya A. Kannan, Baris Fidan, and Guoqiang Mao. 2010. Analysis of flip ambiguities for robust sensor network
localization. IEEE Transactions on Vehicular Technology 59, 4 (2010), 2057–2070.

[23] David Moore, John Leonard, Daniela Rus, and Seth Teller. 2004. Robust distributed network localization with noisy
range measurements. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems

(SenSys’04). 50–61.
[24] Bill Jackson and Tibor Jordán. 2005. Connected rigidity matroids and unique realizations of graphs. Journal of Com-

binatorial Theory, Series B 94, 1 (2005), 1–29. DOI:http://dx.doi.org/10.1016/j.jctb.2004.11.002
[25] Qingbei Guo, Yuan Zhang, Jaime Lloret, Burak Kantarci, and Winston K. G. Seah. 2018. A localization method avoiding

flip ambiguities for micro-UAVs with bounded distance measurement errors. IEEE Transactions on Mobile Computing

18, 8 (2018), 1718–1730.
[26] Kevin M. Lillis. 2008. Improved Robustness of Topology Control and Routing Algorithms for Ad-Hoc Wireless Sensor

Networks. The University of Iowa.

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

http://dx.doi.org/10.1109/JSAC.2023.3242708
http://dx.doi.org/10.3390/s23052399
http://dx.doi.org/10.1109/ICCCN49398.2020.9209620
http://dx.doi.org/10.1109/TMC.2011.122
http://dx.doi.org/10.1109/TMC.2020.3015480
http://dx.doi.org/10.1016/j.jctb.2004.11.002

8:28 X. Bai et al.

[27] Yunhao Liu, Zheng Yang, Xiaoping Wang, and Lirong Jian. 2010. Location, localization, and localizability. Journal of

Computer Science and Technology 25, 2 (2010), 274–297.
[28] Francesco Sottile and Maurizio A. Spirito. 2008. Robust localization for wireless sensor networks. In Proceedings of the

2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh, and Ad Hoc Communications and Networks.
IEEE, Los Alamitos, CA, 46–54.

[29] Tianyuan Sun, Yongcai Wang, Deying Li, Wenping Chen, and Zhaoquan Gu. 2018. Robust component-based network
localization with noisy range measurements. In Proceedings of the 2018 27th International Conference on Computer

Communication and Networks (ICCCN’18). IEEE, Los Alamitos, CA, 1–9.
[30] Xiaoping Wang, Zheng Yang, Jun Luo, and Changxiang Shen. 2011. Beyond rigidity: Obtain localisability with noisy

ranging measurement. International Journal of Ad Hoc and Ubiquitous Computing 8, 1-2 (2011), 114–124.
[31] Wei Liu, Enqing Dong, Yang Song, and Dejing Zhang. 2014. An improved flip ambiguity detection algorithm in wireless

sensor networks node localization. In Proceedings of the 2014 21st International Conference on Telecommunications

(ICT’14). IEEE, Los Alamitos, CA, 206–212.
[32] Wei Liu, Enqing Dong, and Yang Song. 2016. Analysis of flip ambiguity for robust three-dimensional node localization

in wireless sensor networks. Journal of Parallel and Distributed Computing 97 (2016), 57–68.
[33] Donald J. Jacobs. 1998. Generic rigidity in three-dimensional bond-bending networks. Journal of Physics A: Mathe-

matical and General 31, 31 (1998), 6653.
[34] Robert Connelly. 2005. Generic global rigidity. Discrete & Computational Geometry 33, 4 (2005), 549–563.
[35] Tolga Eren, O. K. Goldenberg, Walter Whiteley, Yang Richard Yang, A. Stephen Morse, Brian D. O. Anderson, and

Peter N. Belhumeur. 2004. Rigidity, computation, and randomization in network localization. In Proceedings of IEEE

INFOCOM 2004, Vol. 4. IEEE, Los Alamitos, CA, 2673–2684.
[36] David Kiyoshi Goldenberg, Arvind Krishnamurthy, Wesley C. Maness, Yang Richard Yang, Anthony Young, A. Stephen

Morse, and Andreas Savvides. 2005. Network localization in partially localizable networks. In Proceedings of the 24th

Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 1. IEEE, Los Alamitos, CA, 313–326.
[37] Donald J. Jacobs and Bruce Hendrickson. 1997. An algorithm for two-dimensional rigidity percolation: The pebble

game. Journal of Computational Physics 137, 2 (1997), 346–365.
[38] John E. Hopcroft and Robert Endre Tarjan. 1973. Dividing a graph into triconnected components. SIAM Journal on

Computing 2, 3 (1973), 135–158.
[39] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. 2019. Enumerating k-vertex connected components in

large graphs. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE’19). IEEE, Los
Alamitos, CA, 52–63.

[40] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2018. AirSim: High-fidelity visual and physical sim-
ulation for autonomous vehicles. In Field and Service Robotics. Springer Proceedings in Advanced Robotics, Vol. 5.
Springer, 621–635.

[41] Jan De Leeuw. 2005. Applications of Convex Analysis to Multidimensional Scaling. University of California, Los Angeles.

Received 6 November 2022; revised 17 April 2023; accepted 20 June 2023

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 8. Publication date: October 2023.

