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Influence maximization (IM) is a widely studied problem in social networks, which aims at 
finding a seed set with limited size that can maximize the expected number of influenced 
users. However, existing studies haven’t considered the matching relationship, which refers 
to such scenarios that influenced users seek matched partners among the influenced users, 
such as time matching with friends to watch movie, or matching for opposite sex in 
the blind date. In this paper, we investigate different matching scenarios and propose 
online-matching (offline-matching), in which the matching and influence propagation are 
simultaneous (asynchronous). For the matching result, we introduce two matched types 
‘s-matched’, i.e., i → j and ‘d-matched’, i.e., i ↔ j. Then, we formulate the matching 
influence maximization (MM) problem to optimize a limited seed set that maximizes the 
expected number of matched users. We prove that the MM problem is NP-hard and the 
computation of the matching influence is #P-hard. Next, we analyze the submodularity 
of the matching influence. To address the problem, we propose efficient methods OPMM
(SAMM) to solve the MM in online-matching (offline-matching) with (1 − 1/e − ε)-
approximation (β(1 − 1/e − ε)-approximation) guarantee. Experiments on the real-world 
datasets show our algorithms outperform state of the art algorithms in terms of more 
accurate matching propagation results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The online social network has a profound impact on our daily life. Specially in viral marketing, many business activities 
are promoted through social network platforms such as Facebook, Twitter, Wechat and Weibo. They usually choose a few 
customers to experience the product firstly, and then let them spread the positive information by using the effect of social 
network such as word-of-mouth. Then this creates the problem of influence maximization (IM) [2]. Kemp et al. [3] model 
the diffusion process as IC and LT, and formulate the basic IM problem at first. Since then, based on the basic diffusion 
models (IC, LT) and the concept of IM, a lot of studies have been presented. On one hand, some researchers find more 
efficient algorithms to solve the basic IM, such as the work in [4–10]. On the other hands, researchers extend the basic 
IM problem to consider more practical factors based on the reality scenes, such as [11–20]. However, to the best of our 
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Fig. 1. The example of location-based matching on social network.

knowledge, a commonly seen factor matching relationship, i.e., whether influenced people can find any other influenced 
people matched them as partners, hasn’t been investigated in literature.

Matching relationships are commonly seen in social networks and more viral market strategies are paying attention to 
this factor, specially in the online group-buying markets [21,22] such as Pinduoduo, a famous online shopping company gives 
discounts to group buyers matched with purchase intention. We also give two following examples to show how necessary 
matching relationships are in many viral markets.

Example 1.1. When a new movie is propagated through social network, people that are interested commonly will introduce 
the movie to their friends and go to see the movie with the influenced friends in their common free time, because people 
usually don’t want to see a movie alone. For two interested friends, whether they have common time can be seen as the 
matching relationship.

Example 1.2. The business often proposes group-buying, in which the members of a group must have similar address to 
reduce the transportation cost. For two participants, whether they are in common address can be seen as the matching 
relationship.

With limited budget, business often selects a few users as seeds to propagate their products or activities through the 
social network. A common strategy of existing studies in IM is to choose seeds that can maximize the diffusion influ-
ence. However, considering the matching relationship, this may be a bad strategy. We concrete the Example 1.2 in Fig. 1. 
The red rectangular box represents a common address and the black arrow represents the definite influence from one 
user to another through social network. We suppose that the business with the limited budget can only choose one user 
to propagate the group-buying activity. Node v19 is the best choice in tradition IM since it influences the most nodes 
{v9, v8, v5, v7, v11, v12, v15, v17, v18, v20, v22}. But note that none of the 11 people can join the activity as they can’t group 
with any other for none of them has common address. If we choose node v1 instead, it influences {v4, v5, v6, v7, v2, v3}. All 
these six nodes can join the activity as the grouping result is {(v4, v5), (v6, v7), (v2, v3)}. Obviously v1 is a better choice.

In this paper, we consider the IM problem with matching relationships. The key contributions are as follows:
1. We firstly investigate the general matching model in social networks. We propose two diffusion-matching processes, 

i.e., online-matching and offline-matching. Online-matching requires matching happens only between influence sending per-
son and those influenced by him/her. The matching of two persons follows the online diffusion between them closely. 
Offline-matching allows matching among all influenced people, two influenced persons can match each other at any time. 
For the matching result of a node, s-matched and d-matched are proposed. s-matched means being matched unilaterally, 
while d-matched means being matched bilaterally.

2. We then propose the matching influence maximization problem (MM) which is to find k seeds such that the number 
of people matched on the social network is maximized. We prove that the MM problem is NP-hard and the computation of 
influence is #P-hard. We also prove that the matching influence is submodular for online-matching but not submodular for 
offline-matching.

3. For the online-matching problem, we propose efficient methods OPMMo,s for s-matched type problem and OPMMo,d

for d-matched type problem respectively. Both methods lead to approximate solution with 1 − 1/e − ε ratio based on the 
reverse reachable set.

4. For the offline-matching problem, we present efficient methods SAMM f ,s for s-matched type problem, and SAMM f ,d

for d-matched type problem respectively. Both methods lead to approximate solutions with β(1 − 1/e − ε) ratio based on 
sandwich idea.

5. At last, we model the matching relationship from the real-word labeled datasets. The results of experiments on 
real-world datasets demonstrate that the proposed methods provide significant improvement, in terms of more accurate 
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matching influence and less ineffective influence in which the node is influenced but not matched, relative to the tradi-
tional influence maximization strategy.

2. Related work

Soical influence problems:
Kemp et al. [3] firstly formulated the basic problem of influence maximization (IM) which is to find k seeds such that 

the number of influenced nodes is maximized, when the influence spreads from these seeds through social network, based 
on two basic spread models which they proposed as IC and LT. After that researchers extended the basic IM problem by 
considering more practical factors based on the reality scenes from different perspectives, such as time-constrained [11,12], 
topic-aware [13,14], competition [15,16], multi-round [20], rumor-control [17], location-target [18,19], companies-balance 
[23], group-fairness [24]. Recently, the work [25] proposed the group influence maximization problem in social networks, 
and some scenes they considered are similar to our paper such as group buying. But in their model, they firstly supposed 
that there are many definite groups and then they aim to solve how to activate these groups as more as possible, where a 
group is said to be activated if a certain proportion of nodes in this group is activated. However many times, it’s hard to 
get the group in advance. But in our paper, we can consider the groups are dynamically formed according to the matching 
relationships instead.

Related algorithms:
There are many works in designing and improving algorithms to solve the IM problem. Kempe [3] proved that the basic 

IM problem is NP-hard and computing the influence is #P-hard. They also proved the good property of submodularity for the 
target function. As the NP-hardness, we hope to find efficient algorithms with good approximation-guaranteed. Nemhauser, 
Wolsey, and Fisher [26] show that the general greedy hill-climbing algorithm (start with the empty set, and repeatedly add 
an node with the maximum marginal gain for the target function) approximates the optimum to within a factor of (1 −1/e), 
when the target set function f : 2V → R satisfied following conditions:

• Non-negative: f ≥ 0;
• Non-decreasing: f (S1) ≥ f (S2), ∀ S2 ⊆ S1;
• Submodular: f (S1 ∩ {v}) − f (S1) ≤ (S2 ∩ {v}) − f (S2), ∀ S2 ⊆ S1 ⊂ V , v ∈ V /S2;

As the #P-hardness of the target function, it costs too much time using the heavy Monte Carlo simulations to estimate 
the marginal gain of node’s influence. So although the greedy hill-climbing method can guarantee the (1 − 1/e − ε)-
approximation where ε is the loss of influence estimation, and there are many improvements such as the works in [4,27], 
and CELF [5], CELF++ [6], but such methods are still inefficient in the large scale network. Tang et al. [8] and Borgs et al. 
[7] proposed the reverse influence set (RIS) sampling method to estimate the influence. The RIS-based methods are efficient 
for the large scale network, but there is a key problem that how to sample the RIS sets as less as possible to reduce the 
time cost and guarantee the (1 − 1/e − ε)-approximation with high confidence. So later, there are many RIS-based exten-
sions and improvements such as the Influence Maximization via Martingales (IMM) [9], Stop-and-Stare (SSA) and Dynamic 
Stop-and-Stare (D-SSA) [10,28]. Recently, as far as we have known, the Online Processing Information Maximization (OPIM) 
[29] has superior empirical effectiveness.

3. The social network matching model

3.1. Review of IC model as diffusion process

In this paper, we consider the information diffusion process follows the IC model [3]. Let’s denote Gi(V i, Ei, P i) the 
influence propagation graph with the influence probability P i for each direct edge. The influence spreads from a seed set S
in rounds. Initially, only the seeds are active and other nodes are inactive. In each round, every node that became active in 
the previous round has one chance to influence its out-neighbors following the influence probability. The process terminates 
when no inactive nodes can be influenced to become active.

3.2. The matching relationship

Matching is common in daily life, such as matching to see the movie, go shopping, travel and have dinner with friends 
who have common free time, or matching to organize blind date for single people according to the interest and age. 
Whether the matching is successful or not may often be uncertain in reality, and so without losing generality, we model 
the uncertain matching relationship between two users in a weighted direct graph defined as follows.

Definition 1. The matching graph Gm(V m, Em, Pm) is a direct graph. For each direct edge �euv ∈ Em , the weight pm
uv ∈ [0, 1]

called matching probability represents the probability that v matches u successfully.
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Fig. 2. The examples for the online-matching and offline-matching. In (c) and (d), the dashed-red nodes represent the nodes have been matched and red 
nodes represent the active nodes. The directed-black line such as the line from v2 to v1 represents that the v2 has influenced v1. The green-dashed-direct 
line such as the line from v5 to v4 in (c) represents that v5 has matched v4, and the green-dashed-undirect line such as the line between v5 to v1

represents that v5 and v1 has matched each other.

3.3. The diffusion-matching process

Note that the premise of matching between two nodes is that they have been influenced to be active firstly. Similar 
to influencing process, we consider there is at most one chance to match each other for two nodes. Considering realistic 
scenarios, we introduce two different influencing and matching processes (diffusion-matching), i.e., online-matching and 
offline-matching.

3.3.1. Online-matching
Two nodes u and v in Gm will try to match each other online once v has influenced u or u has influenced v . That is, 

if there is no online influence process between two active nodes, they won’t match. We formulate the dynamic process in 
rounds as follows.

Let St be the set of new active nodes in tth round. Initialize the seed set as S0. At tth round, every node u ∈ St−1 will 
try to influence its out-neighbor v by the probability pi

uv . If v has been influenced by u, u and v will try to match each 
other by the probability pm

uv and pm
vu respectively if they haven’t matched before.

3.3.2. Offline-matching
Two nodes u and v can match offline as long as both are active, although they didn’t influence each other directly. 

During the influence diffusion process, any pair of two active node u and v can try to match each other offline, respectively 
by the probability pm

uv and pm
vu whenever as long as they haven’t matched before.

All processes terminate when no more nodes can become active, whatever in online-matching or in offline-matching. 
Fig. 2 illustrates the differences of these two processes from the seed node 2. Fig. 2 (a) gives the influence graph and Fig. 2
(b) is the matching graph.

Fig. 2 (c) shows an instance of online-matching, where the influence and matching are simultaneously. In first round, 
seed node 2 influenced its out-neighbor nodes 1, 4 and matched with node 1 bilaterally. In second round, node 4 continued 
to influence its unique neighbor node 5 and matched with it unilaterally. In the third round, the node 5 tried to influence 
and match its neighbor node 6 but failed and the process terminated.

Fig. 2 (d) shows an instance of offline-matching, in which the influence and matching are asynchronous. In first round, 
seed node 2 influenced its out-neighbor nodes 1, 4. In second round, node 4 influenced its unique neighbor node 5 but 
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failed to match with it, and then the influenced node 1 got chance and matched with non-neighbor node 5 bilaterally. In 
the next round, the node 5 tried to influence its neighbor node 6 but got failed and the process terminated.

According to the result of the diffusion-matching process, we define two types for a matched node:

Definition 2. After the diffusion-matching process, in the matching graph Gm , node u is s-matched if there is at least one 
node having matched u, and node u is d-matched if there is at least one active node v such that u has matched v and v
has matched u.

According to the definition, a d-matched node must be also s-matched.

4. The matching influence maximization formulation

General influence maximization problem (IM) is to find the best seed set of limited size to maximize the diffu-
sion influence of information. But as we mentioned above, IM is not suitable if the matching relationship is considered. 
We therefore propose the matching influence maximization problem. Considering that there are two matched types 
(s − matched, d − matched) and two diffusion-matching processes (online-matching, offline-matching), we define the match-
ing influence maximization problem as follows.

Definition 3. Matching Influence Maximization (MM): Given the influence graph Gi , the matching graph Gm , a diffusion-
matching process P ∈ {online-matching, offline-matching}, the matched type of node M ∈ {d-matched, s-matched} and a 
set size k ∈ Z+ , let the matching influence σP ,M(S) be the expected number of nodes matched as M after the stochastic 
diffusion-matching process P from the seeds S in Gi and Gm . The MM problem is to find a seed set S∗

P ,M with size k to 
maximize the matching influence σP ,M :

S∗
P ,M := argmax

S⊆V i ,|S|=k
σP ,M(S)

In order to express convenience, we use symbol ‘s’ (‘d’) to replace ‘M ’ when we talk s-matched (d-matched), and use 
symbol ‘o’ (‘ f ’) to replace ‘P ’ when we talk online-matching (offline-matching), e.g., the mark σo,s represents the matching 
influence of s-macthed in online-maching . We denote the expected number of active nodes as the diffusion influence η(S)

when the influence spreads from a seed set S in Gi . η is nonnegative, monotonically increasing and submodular according 
to [3]. For the matching influence, we have similar properties easily proved by the definition.

Theorem 1. The matching influence σP ,M is nonnegative and monotonically increasing.

Note that d-matched node must also be s-matched, and any matched node must be active first and there are more 
matching chances for a node in offline-matching than online-matching. Then given the Gi, Gm, S , we have following theo-
rem.

Theorem 2. The following properties hold: (1) σ f ,d ≤ σ f ,s; (2) σo,d ≤ σo,s; (3) σo,s ≤ σ f ,s ≤ η; (4) σo,d ≤ σ f ,d ≤ η.

Next we show the hardness to compute σP ,M and the hardness to solve the MM problem.

Theorem 3. The computation problem of σP ,M is #P-hard and the MM problem is NP-hard.

Proof. Given an arbitrary instance of IM problem in IC, let G(V , E, P ) be the influence graph and φ be the diffusion 
influence in G . Then we construct another influence information graph Gi(V ∪ {a}, Ei, P i) by adding a node a into V as 
follows. For each node v ∈ V , we add a direct edge �eva into E with influence probability 1. We also construct a matching 
graph Gm(V ∪ {a}, Em, Pm). There is no matching edge for any two nodes in V . But for each node v in V , there is a 
bidirectional1 edge between a and v in Em , with the matching probability Pm ≡ 1. Considering the MM problem on Gi and 
Gm , we denote pG,S (u) as the probability of u being active in G with seed set S . For any set S ⊆ V ∪ {a} with k (k ∈ Z+) 
size, node a must be influenced that is pGi ,S(a) = 1, because any node in V has the probability 1 to influence a. For any 
v ∈ V , a can’t influence any other node and a can’t change the influenced probability of v with the same seed set in Gi and 
G , then we have pG,S/{a}(v) = pGi ,S(v). η(S) = ∑

v∈V pGi ,S (v) + pGi ,S(a) and φ(S/{a}) = ∑
v∈V pG,S/{a}(v), so we have

η(S) = φ(S/{a}) + 1

1 A bidirectional edge denoted as ed
uv between node u and v is that there must be �euv and �evu .
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Table 1
Frequently used computation rules on graph.

Notation Description

ḡ the graph which consists of edges reversed in g.
gS the subgraph of g which consists of all nodes in the node set S and all paths starting from S .
V s(g) the set of nodes which have outgoing edges in g.
Vd(g) the set of nodes which have bidirectional edges in g.
N s

u (g) the set of node u’s outgoing neighbors in g.
N d

u (g) the set of node u’s neighbors in g, which have bidirectional edges with u.
g1 � g2 the edge-induced subgraph of g2, which consists of all such edges in g2, that the 2 endpoints of each edge are both in g1.
g1 � g2 the edge-induced subgraph of g2 which consists of all such edges in g2 that the 2 endpoints of each edge also have an edge in g1.
g1 � g2 the graph which consists of the all edges in g1 and g2.
g1 � g2 g1 is a subgraph of g2.
Iu(g) the subgraph which consists of the ingoing edges of node u in g.
O u(g) the subgraph which consists of the outgoing edges of node u in g.

In fact, if S �= {a}, any active node v ∈ V must match with a because pm
ua = 1, pm

au = 1 and pi
ua = 1 whenever online-

matching or offline-matching, that is, any active node in Gi must be d-matched and s-matched in Gm , so we have σo,s(S) =
σo,d(S) = σ f ,s(S) = σ f ,d(S) = η(S) and then

σP ,M(S) = φ(S/{a}) + 1

Since φ is #P-hard [30], so σP ,M(S) is #P-hard.
In the following, we prove that the MM problem is NP-hard. Suppose we can get the optimum solution S∗

MM for the MM 
problem within polynomial time, we construct a k size set S∗

I M ⊆ V as follows.

S∗
I M =

{
S∗

MM if a /∈ S∗
MM

S∗
MM/{a} ∪ {v},∀v ∈ V /S∗

MM if a ∈ S∗
MM

for any k size set S ⊆ V , we have φ(S∗
I M) ≥ φ(S∗

MM/{a}) ≥ φ(S/{a}) = φ(S), so we get the optimum solution S∗
I M in the IM 

problem. As IM is NP-hard [3], so is MM. Then this theorem is proved. �
Next we analyze the submodularity of the matching influence through an equivalent generating model.

4.1. The equivalent generating model

To formulate better, we give notations as shown in Table 1, in which g , g1, g2 are direct graphs. We will give an 
equivalent view for the diffusion-matching process.

We may regard that node u attempts to influence its neighbor v as flipping a coin with the probability pi
uv , and that 

v matches u as flipping a coin with probability pm
uv . All the flipping is independent for different edges. So, before the 

matching process begins, we can determine the influence and matching relationship through reserving all edges as flipping 
a coin independently in Gi , Gm , that is, we get a definite influence graph gi and a definite matching graph gm in which 
each edge represents the definite influence or matching. We denote the probability distribution of gi , gm as gi, gm ∼ Gi, Gm . 
Given gi, gm and a seed set S , we show the instance generated in different kinds of diffusion-matching processes as fol-
lows.

(1) Online-matching: We can get the definite online-matching with the result gi
S � gm in which edge �euv represents 

that u has matched v successfully. That u is s-matched is equivalent to that there exists a node v satisfying following 
two conditions: (1) �euv ∈ gi

S or �evu ∈ gi
S ; (2) �euv ∈ gm . That is, all the nodes in V s(gi

S � gm) are the s-matched nodes. u
is d-matched is equivalent to that there exists a node v satisfying following two conditions: (1) �euv ∈ gi

S or �evu ∈ gi
S ; (2) 

�euv ∈ gm and �evu ∈ gm . So the set Vd(gi
S � gm) is the set of d-matched nodes.

Computing the expectation number of the all instances weighted with the probabilities, the matching influence in online-
matching is as follows.

σo,s(S) =
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)|V s(gi
S � gm)| (1)

σo,d(S) =
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)|Vd(gi
S � gm)| (2)

(2) Offline-matching: We can also get the definite offline-matching with the result as gi
S � gm . That v has matched u

is equivalent to that u and v satisfy following two conditions: (1) u ∈ gi and v ∈ gi ; (2) �euv ∈ gm . So the set V s(gi � gm)
S S S
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is the set of s-matched nodes. And u and v has matched each other is equivalent to that u and v satisfy following two 
conditions: (1) u ∈ gi

S and v ∈ gi
S ; (2) �euv ∈ gm and �euv ∈ gm . So the set Vd(gi

S � gm) is the set of d-matched nodes.
Computing the expectation number of the all instances weighted with the probabilities, the matching influence in offline-

matching is as follows.

σ f ,s(S) =
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)|V s(gi
S � gm)| (3)

σ f ,d(S) =
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)|Vd(gi
S � gm)| (4)

4.2. The submodularity for the matching influence

To analyze the submodularity of the matching influence, we first give the following lemma.

Lemma 1. We have the following properties:

1. V s(g1) ⊆ V s(g2) and Vd(g1) ⊆ Vd(g2) if g1 � g2 .
2. gS1∪S2 = gS1 � gS2 .
3. g1 � g3 � g2 � g3 if g1 � g2 .
4. (g1 � g2) � g3 = (g1 � g3) � (g2 � g3)

5. V s(g1 � g2)/V s(g2) = V s(g1)/V s(g2).
6. (g1 � g3) � (g2 � g3) = (g2 � g3) � (g1 � g3)

7. Vd(g1 � g2)/Vd(g2) = Vd(g1)/Vd(g2), if g1 � g2 = g2 � g1

Proof. It’s easy to have properties 1, 2, 3, 4, and we prove property 5 as follows. V s(g1)/V s(g2) ⊆ V s(g1 � g2)/V s(g2) is 
obvious according to (3). We need to prove V s(g1 � g2)/V s(g2) ⊆ V s(g1)/V s(g2). For any node u ∈ V s(g1 � g2)/V s(g2), u
has an outgoing edge �euv in g1 � g2 but no any outgoing edge in g2, and then �euv must be in g1. So u ∈ V s(g1)/V s(g2). We 
have proved 5.

We prove property 6 as follows. For any edge �euv in (g1 � g3) � (g2 � g3), we can infer that: (1) there must be an edge 
�euv or �evu in g1 � g3, then there must be an edge �euv or �evu in g1 and g3; (2) �euv ∈ g2 � g3, so there must be an edge �euv

or �evu in g2 and �euv ∈ g3; �euv ∈ g1 � g3, and there must be an edge �euv or �evu in g2 � g3, so �euv ∈ (g2 � g3) � (g1 � g3). 
Hence (g1 � g3) � (g2 � g3) � (g2 � g3) � (g1 � g3. It’s similar to prove (g2 � g3) � (g1 � g3) � (g1 � g3) � (g2 � g3). We 
have proved 6.

We prove property 7 as follows. It’s obvious that Vd(g1)/Vd(g2) ⊆ Vd(g1 � g2)/Vd(g2). We just need to prove that 
Vd(g1 � g2)/Vd(g2) ⊆ Vd(g1)/Vd(g2). For ∀u ∈ Vd(g1 � g2)/Vd(g2), u has bidirectional edge in g1 � g2 but no bidirectional 
edge in g2. For any bidirectional edge with an endpoint u in g1 � g2, both direct edges of this bidirectional edge must be in 
g1, and otherwise if there exists one in g2, it will conflict with g1 � g2 = g2 � g1, so u must has bidirectional edge in g1
and u ∈ Vd(g1)/Vd(g2). We have proved 7. �
Theorem 4. σo,M is submodular in online-matching.

Proof. Let �vσo,M(S) be the gain after adding v into the seed set S. Suppose seed set S1 ⊂ S2, and according to Equa-
tion (1), (2), Lemma 1, we have

�vσo,M(S1) =
∑

Pr(gi, gm)(|VM(gi
S1∪{v} � gm)| − |VM(gi

S1
� gm)|)

=
∑

Pr(gi, gm)|VM(gi
S1∪{v} � gm)/VM(gi

S1
� gm)|

=
∑

Pr(gi, gm)|(VM((gi
S1

� gi{v}) � gm)/VM(gi
S1

� gm)|
=

∑
Pr(gi, gm)|VM((gi

S1
� gm) � (gi{v} � gm))

/VM(gi
S1

� gm)|
=

∑
Pr(gi, gm)|VM(gi{v} � gm)/VM(gi

S1
� gm)|

and we also have

�vσo,M(S2) =
∑

Pr(gi, gm)|VM(gi � gm)/VM(gi � gm)|.
{v} S2
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As VM(gi
S1

� gm) ⊆ VM(gi
S2

� gm), so we have

|VM(gi{v} � gm)/VM(gi
S2

� gm)| ≤ |VM(gi{v} � gm)/VM(gi
S1

� gm)|.
Hence �vσo,M(S2) ≤ �vσo,M(S1). The theorem is proved. �

For the offline-matching, we give an example with the graphs in Fig. 2 (a), 2 (b). We have �v5σ f ,s({v3, v4}) = 0.75, 
�v5σ f ,s({v3}) = 0, �v5σ f ,d({v3, v4}) = 0.375 and �v5σ f ,d({v3}) = 0. σ f ,s isn’t submodular because �v5σ f ,s({v3, v4}) >
�v5σ f ,s({v3}), and σ f ,d also isn’t submodular because �v5σ f ,d({v3, v4}) > �v5σ f ,d({v3}). So we have the theorem for 
offline-matching as follows.

Theorem 5. σ f ,s and σ f ,d can’t be guaranteed to be submodular in offline-matching.

5. The algorithms for MM problem

Note that the computation problems of diffusion influence and matching influence both are #P-hard. The General greedy 
method uses the heavy simulations of Monte Carlo to estimate the influence. To estimate the diffusion influence more effi-
ciently in IM, RIS [7] generates the Reverse Reachable sets (RRS) through searching reversely and randomly in the influence 
graph Gi from a random node. Then RIS provides the solution of IM with good approximation guarantee by selecting k
nodes greedily that cover2 the most RRS sets. In this section, we will solve MM with similar idea of RRS.

5.1. The reverse reachable set in MM

We denote I as the indicator function for an expression denoted exp. If the exp is true, I{exp} = 1, otherwise I{exp} = 0. 
Denote the independent joint distribution as u, gi, gm ∼ V m

M , Gi, Gm , in which u is selected randomly from the node set 
V m

M := VM(Gm), and gi , gm is induced respectively by reserving edge from Gi with probability P i and Gm with probability 
Pm .

To get the RRS in MM problem, we firstly analyze the seed set S which leads u to be matched for the definite u, gi , gm

as follows.
In online-matching, that u being matched as type M is equivalent to u ∈ VM(gi

S � gm). At the same time, S must contain 
one node s which satisfies at least one of following conditions: (1) u can reach s in ḡi when u has an out-neighbor v in 
gi such that eM

uv ∈ gm; (2) s can be reached from u’s out-neighbor v in ḡi such that eM
uv ∈ gm . Then we denote the set of 

nodes like s which satisfy (1) or (2) as Ro,s
ugi gm for s-matched and Ro,d

ugi gm for d-matched, and we have

Ro,M
ugi gm =

{
V(ḡi{u}) if u ∈ VM(O u(gi) � gm)

V(ḡi
N M

u (Iu(gi)�gm)
) otherwise

(5)

In offline-matching, that u being matched as M is equivalent to u ∈ VM(gi
S � gm). At the same time, S must contain two 

kinds of nodes as follows: (1) the node can be reached from u in ḡi ; (2) the node can be reached from any other node v in 
ḡi such that eM

uv ∈ gm . We construct a set pair

P R M
ugi gm = {V(ḡi{u}),V(ḡi

N M
u (gm)

)} (6)

where the first set is the set of all nodes as type (1) and the second is the set of all nodes as type (2).
Then we propose two following definitions.

Definition 4. A random reverse reachable set RRSo,M in online-matching with matched type M is a set as Ro,M
ugi gm where 

u, gi, gm are sampled from the independent joint distribution (u, gi , gm) ∼ (V m
M , Gi, Gm).

Definition 5. A random reverse reachable set pair PRRS f ,M in offline-matching with matched type M is a set pair as 
P R M

ugi gm where u, gi, gm are sampled from the independent joint distribution (u, gi , gm) ∼ (V m
M , Gi, Gm).

Next we prove that we can estimate the matching influence through the random set RRSo,M and random set pair 
PRRS f ,M as shown in Theorem 6, 7. Before proving the theorems, we introduce two following lemmas.

Lemma 2. I{u ∈ VM(gi
S � gm)} = I{S ∩ Ro,M

ugi gm �= ∅}.

2 We say that a node v covers a set V is that v ∈ V , and specially we say that a node v covers a set pair of V and U is that v ∈ V and v ∈ U .
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Proof. When u ∈ VM(gi
S � gm), u must have such neighbor v in gi

S that v ∈N M
u (gm), so both V(ḡi{v}) ∩ S �= ∅ and V(ḡi{u}) ∩

S �= ∅. In fact, if �euv ∈ gi
S , Ro,M

ugi gm = VM(ḡi{u}) as u ∈ VM(O u(gi) � gm). Or if �evu ∈ gi
S , we have �euv ∈ ḡi , then V(ḡi{v}) ⊆

Ro,M
ugi gm as v ∈N M

u (Iu(gi) � gm) and v ∈ ḡi{u} . So S ∩ Ro,M
ugi gm �= ∅.

When u /∈ VM(gi
S � gm), u has no such neighbor v in gi

S that v ∈ N M
u (gm), then Ro,M

ugi gm = ∅ as we have that u /∈
VM(O u(gi) � gm) and N M

u (Iu(gi)) � gm) = ∅. So we have S ∩ Ro,M
ugi gm = ∅. �

Lemma 3. I{u ∈ VM(gi
S � gm)} = I{S ∩ V(ḡi{u}) �= ∅}I{S ∩ V(ḡi

N M
u (gm)

) �= ∅}.

Proof. When u ∈ VM(gi
S � gm), there exists a node v both in gi

S and N M
u (gm). S ∩ V(ḡi{u}) �= ∅ as u in gi

S . S ∩ V(ḡi{v}) �= ∅
as v in gi

S . S ∩ V(ḡi
N M

u (gm)
) �= ∅ as V(ḡi{v}) ⊂ V(ḡi

N M
u (gm)

).

When S ∩ V(ḡi{u}) �= ∅ and S ∩ V(ḡi
N M

u ( ¯gm)
) �= ∅. So u ∈ V(gi

S) and N M
u (gm) ∩ V(gi

S ) �= ∅, then u ∈ VM(gi
S � gm). �

Theorem 6. σo,M(S) = |V m
M |Pr{S ∩RRSo,M �= ∅}.

Proof. According to the Equation (1), (2) and Lemma 2, we have

σo,M(S) =
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)|VM(gi
S � gm)|

=
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)
∑

u∈V m
M

I{u ∈ VM(gi
S � gm)}

=
∑

u∈V m
M

∑
gi ,gm∼Gi ,Gm

Pr(gi, gm)I{u ∈ VM(gi
S � gm)}

= |V m
M |

∑
u∈V m

M

∑
gi ,gm∼Gi ,Gm

1

|V m
M | Pr(gi, gm)I{u ∈ VM(gi

S � gm)}

= |V m
M |

∑
u,gi ,gm∼V m

M ,Gi ,Gm

Pr(u, gi, gm)I{u ∈ VM(gi
S � gm)}

= |V m
M |

∑
u,gi ,gm∼V m

M ,Gi ,Gm

Pr(u, gi, gm)I{S ∩ Ro,M
ugi gm �= ∅}

= |V m
M |Pr{S ∩RRSo,M �= ∅} �

Theorem 7. σ f ,M(S) = |V m
M |Pr{S ∩PRRS f ,M �= ∅}.3

Proof. According to Equation (3), (4) and Lemma 3, similarly to the proof in Theorem 6, we have

σ f ,M(S) =
∑

gi ,gm∼Gi ,Gm

Pr(gi, gm)|VM(gi
S � gm)|

=|V m
M |

∑
u,gi ,gm∼V m

M ,Gi ,Gm

Pr(v, gi, gm)I{u ∈ VM(gi
S � gm)}

=|V m
M |

∑
u,gi ,gm∼V m

M ,Gi ,Gm

Pr(u, gi, gm)I{S ∩ V(ḡi{u}) �= ∅}I{S ∩ V(ḡi
N M

u (gm)
) �= ∅}

=|V m
M |Pr{S ∩ PRRS f ,M �= ∅} �

To construct the sample of RRSo,M and PRRS f ,M , we first need to get definite gi, gm by reserving all edges in Gi, Gm

with the edge probability. Then construct the set Ro,M
ugi gm or set pair P R M

ugi gm as the Equation (5), (6). We will check and 

3 Note that given a set pair A = {A1, A2} and a set B , A ∩ B �= ∅ is that A1 ∩ B �= ∅ and A2 ∩ B �= ∅.
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search some local edges associated with u in gi and gm and get nodes which will be used as origin nodes for graph reverse 
searching in gi . It may not search and check all of the edges in Gi and Gm , so we just randomly reserve the edge we may 
check and search during the construction to reduce the sampling cost. Based on such idea of random breadth-first searching 
(BFS) on reverse Gi and Gm , we propose the time efficiency sampling algorithm S-RRSo,M for RRSo,M and S-RRSP f ,M for 
PRRS f ,M , the details of which are shown in Algorithm 1 and 2 respectively.

Algorithm 1: S-RRSo,M (Gi, Gm).

1 Create an empty FIFO queue Q and empty sets C, R;
2 Choose a node u randomly from V m

M ;
3 for each edge eM

uv ∈ Gm do
4 if reserve eM

uv in Gm by pm,M
uv successfully. then

5 C ← C ∪ {v};

6 for each node v in C which has �euv in Gi do
7 if Reserve �euv in Gi by pi

uv successfully then
8 Q .enqueue(u);

9 goto reverse search in Gi

10 for each node v in C which has �evu in Gi do
11 if Reserve �evu in Gi by pi

vu successfully . then
12 Q .enqueue(u);

13 reverse search in Gi :
14 while Q is not empty do
15 v ← Q .dequeue();
16 R ← R ∪ {v};

17 for w ∈ N s
v (Ḡ i) and w is not visited do

18 if Reserve �ev w in Gi by pi
v w successfully then

19 Q .equeue(w) and mark w visited;

20 return R as a sample of the RRSo,M

Algorithm 2: S-RRSP f ,M (Gi, Gm).

1 Create an empty FIFO queue Q and empty sets N, R1, R2;

2 Choose a node u randomly from V m
M ; /* Remark es

uv as �euv, pm,s
uv as pm

uv, and pm,d
uv as pm

uv · pm
vu. */

3 for each edge eM
uv in Gm do

4 if Reserve eM
uv in Gm by pm,M

uv successfully . then
5 N ← N ∪ {v};

6 if N is not empty then
7 R1 ← R1 ∪ {u};
8 Q .enqueue(N ∪ {u});
9 while Q is not empty do

10 v ← Q .dequeue();

11 for w ∈N s
v (Ḡ i) do

12 if Reserve �ev w in Gi by pi
v w successfully then

13 if w wasn’t visited before then
14 Q .enqueue(w);
15 Mark w visited;

16 R1 ← R1 ∪ {w} if w can be visited from u;
17 R2 ← R2 ∪ {w} if w can be visited from Nu ;

18 return {R1, R2} as a sample of PRRS f ,M

5.2. OPIM to solve MM in online-matching

Sample θ times for RRSo,M independently, and denote the results as X M
θ = {x1, x2, ..., xθ }. Function F X M

θ
(S) = 1

θ

θ∑
i=1

I{S ∩
xi �= ∅} which is the proportion of sets in X M

θ covered by S , is a statistical estimation for Pr{RRSo,M ∩ S �= ∅}. Then we have 
σo,M ≈ |Vm

M |F X M
θ

(S). The greedy Max-Coverage (Algorithm 3) provides a (1 − 1/e)-approximation solution for the maximum 
coverage problem [31] to choose k nodes that cover the maximum number of sets in X M . So at the same time we may get 
θ
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same approximation solution for our neighbor matching maximization problem ignoring the estimation error, and suppose 
that Sk,θ

o,M is the solution given by the Algorithm 3. As the good properties such as the submodularity of σo,M in Theorem 1, 
4, according to the theory analysis in [9], we have following theorem.

Algorithm 3: Max-Coverage(X M
θ , V , k).

1 Sk,θ
o,M ← ∅;

2 for i = 1 to k do
3 Get the node si ∈ V /Sk,θ

o,M which covers most sets in X M
θ ;

4 Remove all sets from X M
θ , which is covered by si ;

5 Let Sk,θ
o,M ← Sk,θ

o,M ∪ {si};

6 return Sk,θ
o,M as the selected seeds

Theorem 8. Given parameters ε ∈ (0, 1] and l > 0, σo,M(Sk,θ
o,M) ≥ (1 −1/e −ε)σo,M(Soptk

σo,M ) holds with probability at least 1 −|V m
M |−l , 

when

θ ≥ (8 + 2ε)|V m
M | · l log |V m

M | + log
(|V m

M |
k

) + log(2)

Soptk
σo,M · ε2

, (7)

where Soptk
σo,M is the optimum solution for the MM problem with matched type M in online-matching.

As shown in Theorem 8, the number of samples θ must be large enough to ensure the approximation, because the 
more samples lead to less error between the statistical estimation and the truth, but more sampling cost. Note that it’s 
difficult to set θ directly from Equation (7), since Soptk

σo,M is unknown. Many algorithms to solve such parameters estimation 
in sampling have been proposed such as TIM [8], IMM [9], SSA [10], OPIM [29]. We adapt the Algorithm 4 from the OPIM 
which provides an algorithm framework to solve the above set sampling problem when the target function can be estimated 
by the statistical method of covering a random set. And we can get following formulations.

Theorem 9. The adapted OPMM can guarantee: The output Sk,θ
o,M is an (1 − 1/e − ε)-approximation solution with probability at least 

1 − δ(0 < δ < 1); When δ ≤ 1/2, the expected sampling number of MRS sets is O
((

k ln |V | − ln (δ)
)|V m

M |ε−2/Soptk
σo,M

)
.

Hence, by this theorem, we have the expected time cost is O
(

ESS
(
k ln |V |−ln (δ)

)|V m
M |ε−2

S
optk
σo,M

)
, where ESS the expected number 

of the nodes searched in sampling a RRSo,M set.

Algorithm 4: OPMMo,M (Gi, Gm, k, ε, l).
1 Estimate the samples number θ by the algorithm in OPIM [29] with parameters setting (ε, l);
2 Sample θ sets of RRSo,M as Xθ by Algorithm 1;
3 S ← ∅;
4 for q = 1 to k do
5 Get the node sq which covers most sets in X M

θ ;
6 Remove all sets from X M

θ , which is covered by sq ;
7 Let S ← S ∪ {sq};

8 return S as the seed set

5.3. Greedy method to solve MM in offline-matching

Sample θ times for PRRS f ,M independently, and denote the results as XY M
θ ={(x1, y1), (x2, y2), ..., (xθ , yθ )}. Func-

tion F XY M
θ

(S) = 1
θ

θ∑
i=1

I{S ∩ xi �= ∅}I{S ∩ yi �= ∅} is a statistical estimation for the probability Pr{PRRS f ,M [1] ∩ S �=
∅ ∧ PRRS f ,M [2] ∩ S �= ∅}. We have σ f ,M ≈ |VM(Gm)|F XY M

θ
(S) according to Theorem 7. By selecting nodes greedily to 

solve the maximization problem of F XY M
θ

with k size limited, we propose a heuristic Algorithm 4 G-RRSP f ,M for the MM 
problem with matched type M in offline-matching.
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Algorithm 5: G-RRSP f ,M (Gi, Gm,k, θ ).

1 Sample θ set pairs of PRRS f ,M as XY M
θ by Algorithm 2.;

2 S ← ∅;
3 for q in 1, . . . , k do
4 Get the node sq which covers most set pairs.;
5 if Got no such node then
6 Get the node sq which covers most set;

7 Let S ← S ∪ {sq};
8 Remove all sets coverd by sq ;
9 Remove all sets pairs in which both sets are empty.;

10 return S as the seed set

5.4. Sandwich algorithm for MM in offline-matching

As F XY M
θ

is not submodular, the greedy algorithm G-RRSP f ,M can’t provide approximation guarantee. Sandwich Approx-

imation (SA) [16] provides an approximation analysis if there are submodular upper and lower bounds for the objective 
function. According to Theorem 2, η is a submodular upper bound of σ f ,M and σo,M is a submodular lower bound of σ f ,M . 
Then Given Gi, Gm, k, we propose algorithm SAMM f ,M to solve the offline-matching as follows. Run OPIM, OPMMo,M with 
same parameter setting (ε, l) and run G-RRSP f ,M with a suitable θ . Then get the corresponding solutions as Sk

η , Sk
σo,M

, Sk
σ f ,M

. 
We have the solution Sk

sa := argmaxS∈{Sk
η,Sk

σo,M
,Sk

σ f ,M
}σ f ,M(S), which provides the approximation guarantee as following the-

orem.

Theorem 10. The solution given by SAMM f ,M satisfies

σ f ,M(Sk
sa) ≥ β(1 − 1/e − ε).σ f ,M(Soptk

f ,M) (8)

with probability at least 1 − 2|V m
M |−l , where Soptk

σ f ,M
is the optimum solution for the MM f ,M problem, and β = max

{ σ f ,M (Sk
η)

η(Sk
η)

,

σo,M (S
optk
σ f ,M

)

σ f ,M (S
optk
σ f ,M

)
}.

Proof. According to the approximation analysis in OPIM [9] and OPMM in Theorem 7, we have

η(Sk
η) ≥ (1 − 1/e − ε) · η(Soptk

η )

holding with probability at least 1 − |V |−l where Soptk
η is the optimum solution for IM and

σo,M(Sk
σo,M

) ≥ (1 − 1/e − ε) · σo,M(Soptk
σo,M )

holding with probability at least 1 − |V m
M |−l . We denote the event that the following inequality holds as E1

σ f ,M(Sk
η) =σ f ,M(Sk

η)

η(Sk
η)

· η(Sk
η) ≥ σ f ,M(Sk

η)

η(Sk
η)

· (1 − 1/e − ε) · η(Soptk
η )

≥σ f ,M(Sk
η)

η(Sk
η)

· (1 − 1/e − ε) · σ f ,M(Soptk
σ f ,M

)

and we denote the event that following inequality holds as E2

σ f ,M(Sk
σo,M

) ≥σo,M(Sk
σo,M

) ≥ (1 − 1/e − ε) · σo,M(Soptk
σo,M )

≥(1 − 1/e − ε) · σo,M(Soptk
σ f ,M

)

≥ σo,M(Soptk
σ f ,M

)

σ f ,M(Soptk
σ f ,M

)
· (1 − 1/e − ε) · σ f ,M(Soptk

σ f ,M
)

Then we have Pr(E1) ≥ 1 − |V |−l and Pr(E1) ≥ 1 − |V m
M |−l . We denote the event that the Inequality (8) holds as E0. To get 

the lower bound of E0’s probability, considering the probability that E1 and E2 both hold, we have
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Table 2
Origin labeled datasets.

Network # nodes # edges direct

Facebook 4049 88234 False
Twitter 81306 1768149 True
Gplus 107614 13673453 True

Pr(E0) ≥ Pr{E1 ∧ E2} = Pr{E1} − Pr{E1 ∧ Ē2}
≥ Pr{E1} − Pr{Ē2} = Pr{E1} + Pr{E2} − 1

= 1 − |V m
M |−l − |V |−l ≥ 1 − 2|V m

M |−l

The theorem has been proved. �
6. Experiments

In this section, our experiments aim to evaluate the performance of the methods proposed, based on 3 real-world 
labeled datasets4 (facebook, twitter, gplus) as shown in Table 2. All codes of the experiments are written in c++ with 
parallel optimization, and we run the experiments on a linux machine with 6 cores, 12 threads, 3.6 hz, CPU and 16G RAM. 
At first, we model the Gi and Gm from original datasets as follows.

Gi : For facebook, we construct two influence edges �euv , �evu if there is the friendship between two users u and v . For 
twitter and gplus, we construct an influence edge �euv if user v follows user u. As the general setting, for each edge �euv

we let the influence probability pi
uv to be 1

di(v)
in which di(v) is the indegree of v .

Gm: We construct the matching probability by a natural idea that more common features provide higher matching proba-
bility. For two nodes u, v with feature set Lu, Lv , the probability of v matching u is with correlation to |Lu∩Lv |

|Lu | . Specially 
we set a threshold λ and then construct the matching to be definite as follows:

pm
uv =

{
1 if |Lu∩Lv |

|Lu | ≥ λ

0 if |Lu∩Lv |
|Lu | < λ

Given Gi, Gm , we compare our algorithms with the following algorithms as baselines. OPIM [9] is the method to solve 
the IM problem in Gi . And HighDegree is the method choosing the seeds from top k nodes with high outdegree in Gi .

6.1. Parameters setting

We set λ = 0.1 for facebook and λ = 0.2 for gplus and λ = 0.3 for twitter. With lower ε and higher l, the algorithms 
OPMM provide a higher approximation with higher probability, but cost more running time, so we set the parameters 
ε = 0.1 and l = 1 in OPIM and SAMM. We set the number of samples θ = 10|V M

m | for G-RRSP. To estimate the matching 
influence for given solutions, we use Monte Carlo with simulation times r = 10000. By setting the seeds size k = 1 and 
k = 10 to 200 with a step of 10, we run the experiments to evaluate the performance with changed seed size.

6.2. Performance comparison

We evaluate the performance of the algorithms from not only the matching influence but also matching precision which 
is the percentage of matched nodes in all influenced nodes.

Online-matching: We compare the solution of our algorithm OPMM with OPIM, Random, HighDegree in online-
matching. As shown in Fig. 3(a), in each dataset, OPMM is always outperformed than the baselines both in the matching 
influence and matching precision. We have the solutions provide the matching influence with following comparisons: 
OPMM>OPIM>HighDegree≈Random. OPIM provides higher matching influence than Random and HighDegree as the ad-
vantage in influence spread, but OPIM only aims to maximize the number of influenced nodes but can’t distinguish the node 
with low matching probability, and so OPIM has no obvious difference with Random and HighDegree in terms of matching 
precision.

Offline-matching: For the offline-matching, we compare the solution of our algorithm SAMM with OPIM, Random, High-
Degree. As shown in Fig. 3(b), similar to the result in online-matching, the solutions of SAMM we proposed also have the 
best performance in all three datasets, but note that SAMM will choose the best solution among OPMM, OPIM, G-RRSP, so it 

4 http://snap .stanford .edu /data/.
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Fig. 3. Performance comparisons with different matching models in Facebook, Twitter, Gplus.

can’t be worse than OPIM in offline-matching. We can see that the solutions of SAMM are always given by G-RRSP or OPMM 
in our experiments as the curves of SAMM are above the curves of OPIM. In fact, offline-matching for a influenced node is 
easier than the online-matching as more matching chances, so we can see that there is no significant improvement from 
OPIM to SAMM in Gplus and Twitter in terms of the matching influence, but SAMM still improve the matching precision by 
about 10%.

Running time: As shown in Fig. 4, we compare the running time for OPIM, OPMM, and G-RRSP by running each algo-
rithm repeatedly with 20 times. The average running time increases nearly linearly with the increase of the network scale 
from facebook to gplus. The OPMM can estimate the sample number for the reverse reachable sets which is high correlation 
to k. So we compare the running time of OPMM with the change of seeds size k. The experiments show that the running 
time also increases nearly linearly with the increase of the seed size. Our experiments show that the running time of OPMM 
and G-RRSP are smaller than OPIM, as OPIM may cost more time to sample a RIS set than the RRS set or RRSP pair we 
proposed. Note that, in offline-matching, the SA-MM needs to run three algorithms TIM-MM, TIM-IM, G-RRSP, so it costs at 
least 3 times running time than OPMM or G-RRSP. Note that we ignore the HighDegree and Random method as they cost 
almost no time.

7. Conclusions

In this paper, we point out that the tradition IM can’t offer a good solution in the viral marketing with matching require-
ments. We introduce two diffusion-matching models as online-matching and offline-matching, and model two matching 
types by a node being matched unilaterally or bilaterally. We are the first one to formulate the MM problems, the goal of 
which is to find a small size seed set such that the expected number of matched nodes is maximized. To solve the MM prob-
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Fig. 3. (continued)

Fig. 4. Time efficiency in facebook, twitter, gplus.

lems, we design the efficient algorithm OPMM (SAMM) with the (1 −1/e −ε)-approximation (β(1 −1/e −ε)-approximation) 
guarantee for online-matching (offline-matching). At last, a lot of experiments have been conducted on real-world datasets 
showing that the method we proposed outperforms other comparison methods.
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