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The rapid popularization of mobile devices makes it more convenient and cost-efficient to collect synchro-

nized WiFi received signal strength (RSS) and inertial measurement unit sequences by crowdsensing. The

transition model has proven to be a promising unsupervised localization approach that captures the transi-

tion relationship between the change of RSS signal space and the change of physical space, alleviating the

need of extra knowledge for creating radio map. However, it faces two essential challenges in real-world

deployments. First, model coverage affects its locating performance, because a specific transition model only

represents its local space. Second, the instability of RSS leads to a conflicting relationship between changes

of two spaces because of the complex environment and the heterogeneous type of devices. To address these

challenges, we propose Lightgbm-CTMM, a novel unsupervised localization framework. First, a clustering

method is adopted to capture the expected relationship to ensure robust coverage. Second, direction filter

is employed to guarantee that the change in signal space corresponds to the change in physical space. The

feasibility and effectiveness of Lightgbm-CTMM are evaluated by extensive experiments, and the locating per-

formance of Lightgbm-CTMM is better than that of conventional approaches. Moreover, Lightgbm-CTMM

reduces the work on quality assessment of trajectories.
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1 INTRODUCTION

Indoor location information is critical in numerous industrial and commercial applications, involv-
ing decades of research. The Pedestrian Dead-Reckoning (PDR) [11], which relies on inertial

measurement unit (IMU) to track a user by continuously estimating displacement from a known
location, is effective for locating indoors without the need for infrastructure assistance. But the
noise of inertial sensor data causes track drift [17, 21]. To solve the problem of PDR, many studies
combine other locating information with PDR algorithm to achieve accurate localization. One of
the most effective locating methods is WiFi fingerprinting. The fingerprint localization based on
WiFi [2, 9, 14, 35] has attracted wide attention due to its characteristics such as widespread infras-
tructure, acceptable locating accuracy, and so on. The key step is to build a model that relates the
signal signatures in the signal space to the locations in the physical space. However, most existing
radio-based solutions require a process of site survey to build a radio map, which incurs great
labour and time expenditures.

The rapid popularization of mobile and wearable devices makes the collection of massive tra-
jectory data more convenient and cost-efficient. Therefore, unsupervised learning for radio map
is intensively studied based on massive and unlabeled trajectories that include received signal

strength (RSS) and IMU. Unsupervised learning for indoor localization based on crowdsensing
trajectories can be done in three ways: (1) building the radio map by using the floor-map informa-
tion to constraint user mobility [12, 30, 33], (2) extracting the landmark information by additional
sensors or floor-map to infer the location of the trajectory between the landmarks [4, 22], and
(3) exploiting WiFi-SLAM [6], which uses Gaussian process latent variable models to connect RSS
fingerprints and human movements. The above indoor location techniques, however, have limita-
tions in that they require extra information. The first way needs floor-map information, but the
digital floor-map is not available for many buildings or too expensive to obtain. The second way
always requires additional sensors or floor-map information, but the cost of additional sensors is
so high that it may be not available for diverse user devices in crowdsensing scenarios. The third
way entails long and smooth trajectories for loop closure detection to keep solution accuracy.

The above methods are not suitable to process the RSS+IMU sequences that are massive, crowd-
sensed, and unlabeled, because the trajectories normally do not have additional knowledge. There-
fore, the Transition Model (TM) [34] is proposed to address the problems of unlabeled training
data and lacking additional knowledge. The TM is the transition model of local space, which estab-
lishes the relationship between the spatial changes of RSS signal and physical location, shown as
the relationship between {RSSt−1,RSSt } and {IMUt−1}. In local space, a transition relationship is
one that occurs over a short period of time, where the IMUt−1 represents the motion with a short
distance. The TM realizes location based on traditional locating methods and corrects the rela-
tive position of traditional locating results. The Transition Model to Predict Motion by Signal

Change (TMM) is a transition model that predicts motion by signal change so as to capture rela-

tionship IM̂Ut−1 = TMM (RSSt−1,RSSt ).
There are two problems that affect the locating performance in traditional transition model:

(1) The insufficient robustness of the spatial coverage of the model. Great locating performance
requires a thorough coverage of the space by TMMs, because each TMM represents only
one local space. Crowdsensing trajectories are unlabeled, and the construction of TMM is
random. Therefore, the coverage of TMMs in space is not robust. The problem is shown in
Figure 1(a), and we call this problem the poor robustness of the spatial coverage of the model.

(2) The discordance between signal space change and physical space change. The RSS is un-
stable in the actual environment because of the complex indoor environment and the het-
erogeneous types of intelligent portable equipments [26, 32]. The instability of RSS makes
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Fig. 1. Problems.

the relationship between the change of signal space and physical space inaccurate. Similar
signal space changes may correspond to changes in physical space in different directions.
The problem is shown in Figure 1(b), and we call this problem the discordance between
signal space change and physical space change. A similar problem has also been found in
Reference [16].

To solve the aforementioned problems, we propose the unsupervised localization framework
Lightgbm-CTMM from massive and unlabeled trajectories in this article. The framework is mainly
divided into two stages: offline training and online locating. In the offline stage, the similar relation-
ship triples {RSSt−1, IMUt−1,RSSt } in local space are searched and divided into the same cluster by
clustering the change in signal space {RSSt−1,RSSt } to ensure robust distribution. Then the results
of each cluster are grouped according to {IMUt−1}, and the more rational CTMMs are established
to solve the problem of the discordance between signal space change and physical space change.
To build Lightgbm-CTMM, the Lightgbm algorithm [15] is used to train the model based on all
triples that have their matching CTMMs. In the online stage, Lightgbm-CTMM is used to track
mobile targets online based on the Kalman Filter, where the direction filter is used to solve the
problem of the discordance between signal space change and physical space change.

The Lightgbm-CTMM is a model for reducing the influence of inertial sensor noise on PDR algo-
rithm. To some extent, this model replaces other high-cost locating methods, like fingerprint map
and floor map, as auxiliary locating information. The aim of traditional unsupervised localization
approaches is to build fingerprint map or location model with low cost to achieve absolute posi-
tion locating, but these ways often require additional prior knowledge or have some constraints.
The Lightgbm-CTMM model is used as the auxiliary locating information in the PDR algorithm to
decrease the influence of inertial sensor noise. Besides, Lightgbm-CTMM can only be built with a
large number of unlabeled crowdsourced trajectories. As a result, the cost is lower compared with
traditional unsupervised localization approaches.

The main contributions are summarized as follows:

(1) To solve the problem of the poor robustness of the spatial coverage of the model, cluster-
ing for the transition relation of signal space is proposed instead of establishing transition
relation randomly. The more rational transition model CTMM is established with robust
distribution and robust fraction of coverage.

(2) To solve the problem of discordance between signal space change and physical space change,
a direction filter is proposed to guarantee the consistency between signal space transition
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and physical space transition, which replaces the previous work of evaluating the quality of
trajectories.

(3) Lightgbm’s classification model improves the accuracy of finding the current matching
CTMM in the online locating stage.

(4) Lightgbm-CTMM reduces the workload of evaluating the quality of training trajectories and
mobile targets’ trajectories.

The remaining sections are organized as follows. Section 2 introduces related work. Section 3
is the description of Lightgbm-CTMM framework. The construction of Lightgbm-CTMM is intro-
duced in Section 4. Section 5 presents the online locating of Lightgbm-CTMM. Simulation and
experiment evaluation are conducted in Sections 6 and 7. Section 8 is the conclusion.

2 RELATED WORK

We focus on the unsupervised learning for indoor location based on massive and unlabeled trajec-
tories, which can be roughly classified into two categories.

2.1 Unsupervised Localization for Relative Position

Unsupervised localization for relative position means locating by scheme to correct the relative po-
sitions of traditional locating results, and the specific location is given by traditional methods. The
TM [34] is the first unsupervised localization model that does not require any additional informa-
tion, such as floor maps, additional sensing methods, or trajectories with special requirements. The
Transition Model captures the relationship between two consecutive signal states {RSSt−1,RSSt }
and their intermediate motion IM̂Ut−1 to improve the locating accuracy of traditional locating
method.

2.2 Unsupervised Localization for Absolute Position

Unsupervised localization for absolute position means locating by scheme to obtain specific loca-
tions in the environment. Its primary task is the construction of the radio map.

2.2.1 Unsupervised Learning Using Floor-map Information. The WILL [31] proposes that to
build the radio map, the “virtual rooms” obtained by different room-based features and connec-
tivity of rooms calculated by pedestrian trajectory can be used to map to the physical rooms. The
HMM is modeled for trajectories, and a hybrid global-local optimization scheme is proposed to de-
termine the optimal position of the fingerprint sequence on the indoor map [13]. A method based
on Huffman transform and Harris corner detection is proposed, in which the unlabeled trajectory
data is matched with all the possible trajectories on the floor map to determine its possible loca-
tion [19]. LIFS [33] proposes that the multi-dimensional scaling algorithm is used to transform the
floor map and trajectory into the Stress-free map and to match two Stress-free maps to build the
radio map. Zee [24] fuses user traces with a floor plan using a particle filter and WiFi to help locate
traces. PiLoc [29] merges walkinging segments and signal strength information to derive a map of
walking paths.

2.2.2 Unsupervised Learning by Organic Landmarks. UnLoc [28] locates traces to a floor plan
via landmarks found on the indoor map and some specific locations. Additional sensors are used
to detect the organic landmark at the same time as the WiFi fingerprint measurement, and the
position between the landmarks is inferred by the track estimation scheme, resulting in the WiFi
fingerprint point position [22]. A preliminary radio map is constructed by the location information
of the mobile payment, and a considerable amount of trajectory data is accumulated to refine the
radio map [1].
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Fig. 2. Framework of Lightgbm-CTMM.

2.2.3 Unsupervised Learning by WiFi-SLAM. WiFi-SLAM [6] models the signal strength distri-
bution and simultaneously recovers the trajectories. It needs some labeled data to train the initial
values for some model parameters. By using a Gaussian process, an online model of the signal
strength map can be constructed, which in turn can be used to provide a current maximum likeli-
hood estimate of the source location [7]. SignalSLAM [20] is proposed on the basis of hybrid WiFi,
Bluetooth, LTE, and geomagnetic signals. WiFi-GraphSLAM [10] also recovers and corrects user
traces using WiFi signals by incorporating inertial sensors.

3 SCHEME DESCRIPTION

3.1 Framework of Lightgbm-CTMM Scheme

In this section, we introduce the framework of the Lightgbm-CTMM, as shown in Figure 2. The
Lightgbm-CTMM framework is mainly divided into two stages: offline training stage and online
locating stage.

The work in the offline training stage is as follows: (1) preprocessing for massive and unlabeled
trajectories to get the data in triple format {RSSt−1, IMUt−1,RSSt }, (2) clustering for triples based on
the change in signal space {RSSt−1,RSSt } and grouping based on direction information of {IMUt−1}
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Table 1. List of Notations and Explanations

Notations Explanations Notations Explanations

S unlabeled sequences of RSS+IMU s i ith trajectory

Z i RSS data of ith trajectory U i IMU data of ith trajectory

zi

t
RSS of ith trajectory at record location of

time t

−→u i

t
inertial vector of ith trajectory between

time t and t + 1

д local transition relation triple

{zt−1, �ut−1, zt }
T all triples set

rq confidence coefficient in Kalman Filter Kt Kalman gain

ūt−1 estimated inertial vector ût−1 inertial vector from Lightgbm-CTMM

Qt process noise uncertainty Rt measurement uncertainty

in every cluster, (3) creating a CTMM based on averaging triples from the same group, and
(4) using Lightgbm to obtain the relationship between all triples and CTMMs so as to build
Lightgbm-CTMM.

The work in the online locating stage is as follows: (1) getting the observing motion IM̂U with
the current triple of mobile target by Lightgbm-CTMM and direction filter and (2) locating by

Kalman Filter using the observing motion IM̂U and the motion of inertial navigation
−−−→
IMU .

3.2 Description of Notations

The trajectories are defined as S = {s1, . . . , sN }, whereN is the number of trajectories; si = {Z i ,U i }
represents the ith trajectory, and Z i = {zi

1, . . . , z
i
t , . . . , z

i
M i
} is the RSS sequences of the ith trajec-

tory composed of M i samples, where zi
t represents the RSS sequence recorded on the ith trajec-

tory at time t . U i = {−→u i
1, . . . ,

−→u i
t , . . . ,

−→u i
M i−1
} represents inertial vector sequences between each

two continuous RSS sequences in Z i . The inertial vector between two RSS sequences zi
t−1 and

zi
t is defined as −→u i

t−1. The local transition relation triple {RSSt−1, IMUt−1,RSSt } is recorded as
д = {zt−1, �ut−1, zt }. As we do not consider which trajectory the triples belong to, all triples are
recorded as T . The main notations are described in Table 1.

4 CONSTRUCTION OF LIGHTGBM-CTMM

The basic idea of Lightgbm-CTMM construction is to effectively capture specific expected relation-
ships between transitions of signal space and corresponding motion by smoothing the motions �u
in similar transitions of signal space. The expected motion relationship is shown in Figure 3. The
RSSt−1 is RSS feature at location pt−1 at time t − 1, and the RSSt is RSS feature at location pt at

next time t . There is a change in physical location between pt−1 and pt that is recorded as
−−−→
IMU t−1.

So this relationship is between RSSt−1 and RSSt . Because the time interval between time t − 1
and time t is so short due to the WiFi module’s recording frequency, the location changes are
slightly recorded by IMU. The main work includes the construction and training of local space
model CTMM to build classification model Lightgbm-CTMM.

4.1 Construction of CTMM

The basic ideas of CTMM construction: The RSS sequence z represents one position in the actual
environment, although the specific location is unknown. A clustering method is used to find similar
signal messages in References [3, 5, 18, 25], and the employment of clustering algorithm improves
the locating performance of their methods. Likewise, two continuous RSS sequences {zt−1, zt }
represent one local space in the actual environment, although the exact location of the local space
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Fig. 3. Explanation of motion relationship.

is unknown. But we can cluster for {zt−1, zt } to find similar changes in signal space and group
them into the same cluster. In this way, the clustering method is used to find similar transitions of
signal space.

We propose to use the clustering method to find similar transitions of the signal space to ensure
the great robustness of model coverage. In our framework, we adopt k-means for clustering. We
give a reference calculation of the preset values; the value of K can be set according to the size
of the environment and the length of motion, which records slight changes in physical position
because of the recording frequency of WiFi module. In most cases, the recording frequency of a
WiFi module is constant in a single device. Although it varies from device to device, the difference
is not noticeable. So, we take the average length of motion recorded by IMU between continuous
WiFi records times as the estimated length of motion to calculate the expected number of models.
The length of the path in environment is recorded as l , and the estimated average length of motion
is recorded as step. The expected number of models, K , can be calculated by K = l/step. The
purpose of estimating the average length of motion is to determine the number of models.

Because of the discordance between signal space change and physical space change, as well as
the transitory relationship in transition model, the similarity of signal space transitions is high,
whereas physical space transitions have different directions in the same cluster. Therefore, triples
in same cluster need to be regrouped by motion �u. Grouping by direction aims to reduce the im-
pact of different motion directions. Most importantly, it aims to avoid the circumstance where the
expected motion is offset by motions with opposite direction when smoothing the motion. Figure 4
shows the basic construction idea of CTMM.

The trajectories’ original format is not available, so we need to preprocess the data. The goal
is to capture the relationship in local space, so the massive and unlabeled trajectories need to be
converted into triple format д = {zt−1, �ut−1, zt } that represents one local space. We get the triples
set T = {д1,д2, . . . ,дm }, where m represents the number of all triples. After data preprocessing,
CTMMs can be constructed by the triples setT . First, k-means clustering is conducted to generate
cluster indices for triples set T , where the signal transition {zt−1, zt } is taken as feature vectors.
We get the results of clustering C = {c1, c2, . . . , cM }, where ci ∈ {1,K }. Even though we have
local spaces by clustering based on signal transition {zt−1, zt }, there are different directions of
motion in triples that belong to the same cluster because of the discordance between signal space
change and physical space change. To address this problem, we group the results in each cluster by
direction of motion �u as our second step. We decompose the motion vector into two-dimensional
coordinate axes, while the direction with the longest distance on the coordinate axis is denoted as
the direction of the triple. Figure 4 also shows the definition of direction of triple. In addition, you
can also use other methods to smooth the results in different directions. Now, triples that belong to
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Fig. 4. Basic construction idea of CTMM.

the same group have similar signal transition and motion. Finally, to minimize the impact of noise
in IMU, the CTMM is built by averaging the triples that belong to one group, where one triple is
д = {zt−1, �ut−1, zt }. We average the {zt−1, zt } as the representative signal transition of CTMM that
is built by one group and average the �ut−1 as the expected motion ût−1 of this CTMM. The CTMM
is shown as ût−1 = CTMM (z̄t−1, z̄t ), where z̄t−1, z̄t represent the average RSS features. The specific
process is described in Algorithm 1.

ALGORITHM 1: Construction of CTMM

Input: K , T
Output: CTMM (z̄t−1, z̄t )s

1: #Data Preprocessing Part
2: for each s ∈ S do

3: change s to triple format д = {zt−1, �ut−1, zt }
4: add д to T
5: end for

6: #Construction Part
7: C = k-means (T ,K ) by {zt−1, zt }
8: #{zt−1, zt } as eigenvector
9: for i = 1 to K do

10: G
′
= T ( f ind (C == i ))

11: group by direction of �u of д in G
′

recorded as Gas
12: averaging triples {zt−1, �ut−1, zt } in Ga to build CTMM (z̄t−1, z̄t )
13: end for

4.2 Construction of Lightgbm-CTMM

In the online stage, the optimal matching CTMMs need to be searched by a real-time triple of
mobile target. This is a classification task, in which Lightgbm algorithm is well applied [8, 36].
Therefore, we suggest using Lightgbm algorithm to capture the corresponding relationship be-
tween CTMMs and the transition of signal space, so as to construct the Lightgbm-CTMM.

The construction of CTMM makes each triple correspond to its CTMM. The transitions of sig-
nal space are eigenvectors and CTMMs are the corresponding categories. For example, one triple
{zt−1, �ut−1, zt } belongs to group i that is used to construct CTMMi . It means CTMMi is the category
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Fig. 5. Basic idea of Training Lightgbm-CTMM.

Fig. 6. Basic idea of online locating.

of transitions of signal space {zt−1, zt }. Lightgbm algorithm is utilized to capture the relationship
between signal transition {zt−1, zt } and CTMMs to build classification model Lightgbm-CTMM.
Figure 5 shows the basic idea of constructing Lightgbm-CTMM. The aim of Lightgbm-CTMM is to
obtain more accurate corresponding CTMM based on real-time signal transition in the trajectory.
Lightgbm algorithm can learn a more accurate corresponding relation between signal transition
{zt−1, zt } and CTMM.

5 ONLINE LOCATING OF LIGHTGBM-CTMM

In the online locating stage, the observing motion û is obtained by Lightgbm-CTMM so that
{zt−1, zt } of mobile targets can be located. We combine the observing motion û with predicted
motion �u via Kalman Filter for online locating. The basic idea of the online stage is the utilization
of direction filter and Kalman Filter, which is depicted in Figure 6.

The basic idea of direction filter: The inertial navigation signal is so noisy that trajectory drift
occurs. But the motion is brief in transition model. We believe that the motion has certain credi-
bility, although there is noise in the distance and direction of motion. Therefore, the best-matched
Konline CTMMs are filtered based on the motion direction of mobile target to ensure the consis-
tency of the motion direction. Most importantly, it aims to avoid the condition that best-matched
CTMMs have opposite direction. However, the distance of motion is not taken into consideration,
because we need to reduce the addition of noise data.
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The basic idea of locating by Kalman Filter: The Kalman Filter is successful in the application of
trajectory tracking [37]. The online locating method based on Kalman Filter is proposed by TMM
[34]. In this method, the key step for state prediction is as follows:

p̄t = pt−1 + �ut−1, (1)

where p̄t is the predicted position based on the position of the previous moment pt−1 and the
motion �ut−1 between t and t − 1.

Currently, we can get the observing motion by Lightgbm-CTMM to correct the result:

ūt−1 = �ut−1 + Kt (ût−1 − �ut−1), (2)

where Kt is the Kalman gain, ût−1 is observing motion, and �ut−1 is predicted motion. Therefore,
the estimated position can be written as

pt = pt−1 + ūt−1. (3)

The specific process is described in Algorithm 2. There are two parameters σr and σq being

processed, and the calculation result rq = log(σ 2
r /σ

2
q ) is an important parameter that affects the

result. We referred the calculation result rq as the confidence coefficient. When rq < 0, it means
that the result of transition model is more plausible; when rq > 0, it means that the results of
inertial navigation are more plausible. In the subsequent experiments, we will carry out specific
evaluations of rq.

ALGORITHM 2: Online locating based on Kalman Filter

Input: pt−1, Liдhtдbm −CTMM , {zt−1, �ut−1, zt }, Konline

# {zt−1, �ut−1, zt } is the current state of mobile target
Output: pt

1: Qt = σ 2
q I

2: ūt−1 = �ut−1

3: Σ̄t = Σt−1 +Qt

4: Aim = Liдhtдbm −CTMM (zt−1, zt ,Konline )
#Konline CTMMs for highest probability

5: Aimf = Direction Filter by �ut−1 f or Aim
6: ût−1 =mean(�u in Aimf )
7: Rt = σ 2

r I
8: St = Σ̄t + Rt

9: Kt = Σ̄tS
−1
t

10: ut−1 = ūt−1 + Kt (ût−1 − ūt−1)
11: Σt = (I − Kt )Σ̄t

12: pt = pt−1 + ut−1

6 SIMULATION EVALUATION

In this section, simulation experiments are used to investigate the performance of the Lightgbm-
CTMM scheme under various conditions.

6.1 Simulation Setting

In the simulation experiments, we set 100 access points (APs) generated randomly in a 42 ×
42 m2 (420 × 420 pix2) environment. The starting point of the trajectory is near the coordinates
(0,0), and the starting direction is randomly up or to the right. The trajectories are moving along the
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Fig. 7. Evaluation environment and parameter evaluation of TMM in offline training.

Table 2. Interpretation of Contrast Experiment

Methods Interpretation

Inertial Navigation (PDR)
pedestrians dead reckoning without

additional optimization algorithms

TMM traditional TMM method

TMM-filter using direction filter in online stage of TMM additionally

CTMM-filter
the TMM model is replaced by CTMM model

in TMM-filter method

Lightgbm-CTMM
classification model Lightgbm-CTMM

using direction filter in online stage

edge of the environment. The number of trajectories is 100. We set the estimated average length
of motion as 2 m (20 pix) and add the Gaussian noise N (0,Vu = 10) to IMU. For each RSS sequence,
it is calculated by

rss(pi ) = rss(p0) − 10 ∗ α ∗ log

(
di

d0

)
+ σ , (4)

where the σ represents the Gaussian noise N (0,Vz = 10) in RSS value, rss(p0) is the transmit
power when the reference point is d0 = 1m, rss(pi ) is the received signal strength at position pi , α
represents the path loss coefficient, and di is the distance between the position pi and the AP. The
view of trajectories is shown in Figure 7(a).

In simulation evaluation, TMM and PDR approaches are taken as the main contrast experiments,
because the PDR is the foundation of TMM and Lightgbm-CTMM. Moreover, the TMM is the first
to be proposed. The interpretation of all contrast experiments is shown in Table 2.

The followings are some influential parameters that need to be set:

(1) the confidence coefficient rq: Since the training data and test data are generated under the
same conditions, the confidence coefficient rq is 0.

(2) the number of models Knumber : Based on trajectory length and estimated average length
of motion, we set Knumber as 120. Because there are two main directions of motion in the
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Table 3. Locating Results of Simulation Evaluation

Methods Average Error(m)

Inertial Navigation (PDR) 7.26

TMM 5.95

TMM-filter 5.35

CTMM-filter 4.71

Lightgbm-CTMM 3.68

environment, the K of CTMM construction is set to half of TMM’s Knumber to ensure the
consistency in the number of TMM and CTMM.

(3) the number of matching models in the online stage Konline : Konline of TMM is 5, Konline

of Lightgbm-CTMM is 2. We choose top-Konline best matching models to get our offline
motion. We believe that selecting the average of the Konline best values as the final result
can improve the locating performance of each model to the expected level.

In addition to these parameters, the parameter of offline training Kof f l ine , which affects TMM’s
locating performance, needs to be considered. In the offline stage, the segmented triples obtained
by TMM have strong noise, so TMM uses a smoothing method based on the KNN algorithm to
smoothly average �ut−1 to minimize the drift caused by the PDR algorithm. So Kof f l ine is the pa-
rameter in the KNN algorithm. This value is evaluated when other parameters are consistent, and
the result of this parameter is shown in Figure 7(b). When the value of Kof f l ine is set as 100, the
locating results of all approaches are basically stable. The results of TMM are fluctuant, because
the construction of TM is random to some extent. So the Kof f l ine is set as 100 in this simulation
evaluation. Compared with TMM, Lightgbm-CTMM does not require the consideration of this
parameter. The Lightgbm-CTMM reduces the influential parameter in the offline stage.

6.2 Locating Accuracy

In this experiment, we evaluate the performance of the Lightgbm-CTMM in simulation evalua-
tion. We conducted 10 cross-validation experiments, and we choose 10 trajectories as test data,
and the rest of the tracks are used as training data. Figure 8(a) shows the cumulative distribu-

tion function (CDF) of locating error of different approaches. Table 3 shows the specific average
error of different methods. The locating accuracy of Lightgbm-CTMM is better than that of TMM.
Figures 8(b) and 8(c) show the locating views of trajectories. It is obvious that the trajectories of
Lightgbm-CTMM are closer to the true tracks. Because the RSS sequences are created by an ideal
signal propagation model, the locating result of TMM-filter is better than that of TMM on average
error while the locating result of CTMM-filter is worse than that of TMM of small locating error in
the CDF graph. Although we add the Gaussian noise, the discordance between signal space change
and physical space change is not obvious enough.

6.3 Effect by Number of Model

In this experiment, we evaluate the effect of the number of models. Figure 9(a) shows the perfor-
mance under different numbers of models. When the number of models Knumber reaches 70, the
locating results of all approaches are basically stable. But the locating result of Lightgbm-CTMM is
better than that of TMM when the results are mainly steady. Most importantly, Lightgbm-CTMM
can achieve greater performance with less models than TMM. The results of all approaches are
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Fig. 8. The locating results of simulation evaluation and view of locating trajectories.

Fig. 9. Simulation evaluation of different factors.

fluctuant, because the construction of all approaches is random to some extent. However, the sta-
bility of Lightgmb-CTMM is preferable to that of others.

6.4 Effect by Value of K in Online Stage

In this experiment, we evaluate the effect of Konline in the online locating stage. Figure 9(b) shows
the performance under differentKonline in the online locating stage. The setting of differentKonline
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Fig. 10. Experimental environment.

influences the locating results. The bestKonline of Lightgbm-CTMM is 2. When theKonline is set as
4 or 5, the best locating results are obtained. But when Konline exceeds the optimum, the locating
result of TMM becomes worse than the best result of TMM. The increase of Konline indicates that
the search area has been expanded, and some unreasonable TMMs have been added, which makes
the locating performance worse. Lightgbm-CTMM has a better locating result than TMM with
varied Konline . Most importantly, the increase of Konline does not lead to a continuous decline in
locating performance. The experimental results also prove that when Konline > 1, each model will
get a better expected locating performance.

7 EXPERIMENTAL EVALUATION

7.1 Experiment Settings

The trajectories are collected on the 3rd floor of Teaching Building 1 at Hangzhou Dianzi Univer-
sity in Hangzhou, China. The floor space is about 150 × 15 m2 and the effective length of trajectory
coverage is about 150 m. The environment is shown in Figure 10(a). The number of effective APs in
the environment is measured to be 205. Fifty-four IMU+RSS trajectories are collected by the open
source application [23, 27], with 40 trajectories collected by holding the device in hand and 14 tra-
jectories collected by putting the device into a pocket. Trajectories are collected by three different
phones: Vivo, Xiaomi, and Meizu. Different devices produce varied WiFi frequencies, resulting in
distinct length of motion �u. The estimated average length of motion �u is about 2 m. Figure 10(b)
shows the view of trajectories, where the green part represents the true trajectory coverage and
the blue part represents the trajectories located by PDR algorithm. The goal of Lightgbm-CTMM
is to see if we can achieve effective locating correction based on the traditional PDR algorithm, so
the basic PDR algorithm is used in this experiment.

In this evaluation experiment, the PDR algorithm and TMM are taken as comparative experi-
ments. Ten groups of experiments are performed where 5 trajectories are selected randomly as
test data. The main influence parameters are shown in Table 4.

7.2 Locating Accuracy

In this experiment, we evaluate the locating performance of the Lightgbm-CTMM. First, we eval-
uate the locating performance when the PDR results of test trajectories have small locating errors.
Figure 11(a) shows the experiment results. Figure 11(b) shows the CDF result of experiments. Be-
cause the traditional TMM model does not consider the inconsistency between the signal space
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Table 4. Setting of Parameters

Parameters TMM Lightgbm-CTMM

Number of models Knumber 150 150 (K value of k-means = 75)

Number of matching models

in online stage Konline

3 2

Confidence coefficient rq: 0 0

Additional parameters of TMM

in training stage Kof f l ine

60 —

Fig. 11. Results of cross-validation experiments.

change and the physical space change without trajectory quality evaluation, and the confidence
parameter rq = 0, the locating result of TMM in this experiment is worse than that of PDR. When
we set the confidence parameter rq > 0, TMMs are accurately located by relying on inertial naviga-
tion rather than on motion from TMMs. In this experiment, compared with the locating results of
Lightgbm-CTMM and TMM, it is unreasonable when we set rq = 0. The effectiveness of the direc-
tion filter is proved by the fact that the locating result of TMM-filter are better than that of TMM.
The result of CTMM-filter is better than that of TMM-filter in experiments, which means that the
CTMMs established through clustering have better coverage than traditional TMMs. Meanwhile,
from Figures 11(a) and 11(b), we can find that the locating performance of TMM-filter is worse than
that of PDR approach. The reason is that, while the direction filter filters out the offline motion in
the opposite direction, the motion with large angle deviation is still not filtered out. However, we
have grouped �ut−1 in the direction in CTMM, so the locating error of the CTMM-based method is
better than that of PDR and TMM. The result of Lightgbm-CTMM is better than that of CTMM-
filter in most of the experimental groups. It means that a more robust relationship between signal
transition {zt−1, zt } and CTMMs has been established by lightgbm algorithm. The locating results
of Lightgbm-CTMM and PDR are almost the same in the third group. The reason is that the trajec-
tories of this group may match wrong CTMM and get the wrong inertial motion relationship so
the locating results fail to get promoted or even go down compared with PDR. Table 5 shows the
specific average error of all methods. In terms of statistical results, Lightgbm-CTMM is most effec-
tive among all methods. We use the result of PDR as the base to calculate the specific amount
of improvement. The result of Lightgbm-CTMM increases by 14.43% approximately. Figure 12
shows the locating view when the test trajectories have normal locating result of PDR algorithm.
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Table 5. Locating Results of Real Environment

Experimental

Data
Methods Average Error (m)

Improved

Percentage

(based on PDR)

Improved

Percentage

(based on

TMM-filter)

Normal PDR result

with small

locating error

Inertial Navigation(PDR) 7.76 − −
TMM 17.77 − −

TMM-filter 8.42 −8.50% −
CTMM-filter 7.18 7.47% 14.47%

Lightgbm-CTMM 6.64 14.43% 21.12%

Poor PDR result

with big

locating error

Inertial Navigation (PDR) 13.34 − −
TMM 21.06 − −

TMM-filter 12.30 7.79% −
CTMM-filter 11.77 11.76% 4.30%

Lightgbm-CTMM 10.58 20.68% 13.98%

Compared with other approaches, Lightgbm-CTMM gains a better locating view and is closer to
the actual trajectory. The result of TMM is quite different from the actual trajectory. We can also
find that the TMM result is so much worse than the PDR result. Moreover, the result of the model
revision can only guarantee the current optimal rather than the global optimal, so some locating
results after partial revision are poor. This is also reflected in the third group experiment. How-
ever, the locating results after model revision are usually better from the perspective of statistical
results.

In addition, we evaluate the locating performance when the PDR result of test trajectories has
big locating errors. Figure 13(a) shows the CDF result of experiments. Table 5 also demonstrates
the specific average error in this experiment. TMM-filter achieves a better result than PDR. In this
experiment, the locating result of Lightgbm-CTMM is best when compared with other methods.
Figures 13(b) and 13(c) show the locating views when the test trajectories have poor locating re-
sults of PDR algorithm. The result accuracy of Lightgbm-CTMM increases by 20.68% and 13.98%
approximately compared with PDR and TMM-filter respectively. Since the PDR algorithm is the
basis of Lightgbm-CTMM, the magnitude of the locating correction is valid.

In real-world experiments, TMM performs poorer than PDR in terms of location, but it out-
performs PDR in simulation experiments. The reason is that the RSS sequences at close locations
are more unstable in real environment, in which the discordance between signal space change
and physical space change is more obvious. Although Gaussian noise is added in the simulation
experiment, there is still a big difference between simulation and the real environment.

7.3 Effect by Confidence Coefficient

In this experiment, we evaluate the effect of the confidence parameter rq. Figure 14(a) shows the
results with different confidence coefficients. rq < 0 means that we believe the results of transition
model more than inertial navigation, that is, the correct result of trajectory is closer to the result got
by framework. rq > 0 means that we believe inertial navigation more than the result of transition
model, implying that the correct result of trajectory is closer to the result got by PDR. The setting
of confidence coefficient means to evaluate the quality of trajectories data that contain training

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 26. Publication date: January 2022.



Transition Model-driven Unsupervised Localization Framework Based 26:17

Fig. 12. Locating views with normal PDR result.

data and locating data. The problem of the discordance between signal space change and physical
space change is not considered in TMM. Accurate locating of TMM is achieved by trusting inertial
navigation more than the motion from TMMs, where the inertial navigation includes distance and
direction of motion.

When rq < 0, the locating performance of TMM and TMM-filter improves obviously and the
locating performance of CTMM-filter and Lightgbm-CTMM improves slightly as the rq increases.
When rq > 0, the locating performance of TMM and TMM-filter improves obviously and the lo-
cating performance of CTMM-filter and Lightgbm-CTMM declines slightly with the increase of
rq. When the rq is set as 1.5, the locating performance of all methods are basically equivalent to
PDR algorithm, because the result of PDR algorithm plays a leading role and the correction effect
of observing inertial motion relation has been mainly ignored. Lightgbm-CTMM can get great
locating performance with different confidence coefficients, which means the Lightgbm-CTMM
framework does not need to consider the confidence coefficient rq. Lightgbm-CTMM also believes
the inertial navigation signal, but just considers the direction information of the inertial naviga-
tion signal. Lightgbm-CTMM reduces the evaluation of data quality, especially of the distance of
motion.

7.4 Effect by Types of Device

In this experiment, we evaluate the effect of device types. Different types of devices mean different
frequencies of WiFi acquisition and different received signal strength in the same cases. The results
can be seen in Figure 14(b). The problem of discordance between signal space change and physical
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Fig. 13. Locating views with poor PDR result.

Fig. 14. Evaluation of different factors.

space change is more serious. Lightgbm achieves better locating result than TMM-filter and PDR
with different devices. The robustness of types of the Lightgbm-CTMM framework is proved.

7.5 Effect by Device Positions

In this experiment, we evaluate the effect of the device positions. In our experiment, the device
positions mainly include holding the device in hand and putting the device in pocket. Figure 14(c)
shows the results of different device postures. The Lightgbm-CTMM has a better locating perfor-
mance than both PDR and TMM-filter with different positions. The robustness of positions of the
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Lightgbm-CTMM framework is proved. The PDR locating result of holding the device in hand is
better than PDR locating result of putting the device in pocket. The reason is that the amplitude of
swing of device in hand is greater than that in pocket, implying that the inertial navigation signal
is better. The same is true for Lightgbm-CTMM.

8 CONCLUSION

In this article, we propose the unsupervised localization framework Lightgbm-CTMM to improve
the locating accuracy of dead reckoning approach, which is built by massive, unlabeled, and crowd-
sensing trajectories. The Lightgbm-CTMM is a model for reducing the influence of inertial sensor
noise on PDR algorithm. To some extent, this model replaces the introduction of other high-cost lo-
cating methods as auxiliary locating information. Compared with unsupervised learning for radio
map, this model is effective in reducing the workload and additional requirements. Furthermore,
the Lightgbm-CTMM framework captures specific expected relationships and gives the motion
from signal change in a more accurate way.

The traditional transition model’s locating performance is hampered by the model’s inadequate
spatial coverage and the discordance between signal space change and physical space change. The
CTMM, that is, transition model of Lightgbm-CTMM framework, is established through clustering
the change relation of signal spatial to ensure the robustness of model coverage. Although the
inertial navigation signal is noisy and includes the direction and distance, short-time motion is
believable. Based on the direction filter of target motion change, the consistency of signal space
change and physical space change is guaranteed. In short, our model outperforms TMM in terms
of coverage robustness and direction recognition ability.

The simulation experiment evaluates the performance of the Lightgbm-CTMM framework un-
der different parameters and proves the effectiveness of the Lightgbm-CTMM framework. The
actual-environment experiment proves the feasibility and effectiveness of Lightgbm-CTMM. Com-
pared with TMM, lightgbm-CTMM has higher locating accuracy. Besides, Lightgbm reduces the
requirement for trajectory quality evaluation on quality assessment of trajectories. The basis for
locating by Lightgbm-CTMM framework is dead reckoning approach. Therefore, the Lightgbm-
CTMM framework is intended to correct the relative positions. In future work, the main research
direction is to find a way to build scheme for absolute locating.
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