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GPART: Partitioning Maximal Redundant Rigid and
Maximal Global Rigid Components in Generic Distance
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Partitioning the Maximal Redundant Rigid Components (MRRC) and Maximal Global Rigid Components

(MGRC) in generic 2D graphs are critical problem for network structure analysis, network localizability de-

tection, and localization algorithm design. This article presents efficient algorithms to partition MRRCs and

MGRCs and develops an open-sourced toolbox, GPART, for these algorithms to be conveniently used by

the society. We firstly propose conditions and an efficient algorithm to merge the over-constrained regions

to form the maximal redundant rigid components (MRRC). The detected MRRCs are proved to be maximal

and all the MRRCs are guaranteed to be detected. The time to merge the over-constrained regions is linear

to the number of nodes in the over-constrained components. To detect MGRCs, the critical problem is to

decompose 3-connected components in each MRRC. We exploit SPQR-tree based method and design a lo-

cal optimization algorithm, called MGRC_acce to prune the unnecessary decomposition operations so that

the SPQR-tree functions can be called much less number of times. We prove the MGRCs can be detected

inside MRRCs using at most O (mn) time. Then a GPART toolbox is developed and extensively tested in

graphs of different densities. We show the proposed MRRC and MGRC detection algorithms are valid and

MGRC_acce greatly outperforms the direct SPQR-tree based decomposition algorithm. GPART is outsourced

at https://github.com/inlab-group/gpart.
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1 INTRODUCTION

Finding rigid, redundant rigid, and global rigid components in graphs is a crucial graph structure
analysis problem, which is the foundation for a variety of structure inference and control
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applications, such as network localization in the Internet of Things (IoT) or formation control
in Unmanned Aerial Vehicle (UAV) networks [11, 21, 25]. For example, finding the global rigid
component is the foundation to identify the localizable sub-networks, i.e., the components that
can be uniquely localized in the network [23]. Because applications generally require identifying
the maximum number of nodes that satisfy the specific rigid conditions [12, 16, 23, 24], pursuing
the maximal rigid, maximal redundant rigid, and maximal global rigid components (MGRC)
is of great importance. Here, “maximal” means that the component will lose its desired level of
the rigid property when any other neighboring node is added to this component.

Let G = {V ,E,D} represent a distance graph in�d , where d is the dimension of space; D is the
partially measured distance matrix. If (i, j ) ∈ E, it means the distance between nodes i , j, i.e., di, j

is measured in D . The inter-node distance is assumed symmetric. Algorithms for graph rigidity
analysis are mostly developed for two-dimensional systems, which is also the focus of this article.

For a graph G, it is said generically rigid in �2, if “except the trivial rigid motions, one cannot
continuously deform the graph’s realization in �2 while preserving all the inter-node distances
constraints” [10]. Here, “trivial rigid motions” include transition, rotation, and reflection; The word
“generically” means the nodes’ coordinates are algebraically independent over the rationals, which
is widely assumed in rigidity analysis [2]. A graph is generically globally rigid (globally rigid) if it
has a unique realization in the 2D plane [4]. Jackson et al., [8] prove that a graph is globally rigid if
and only if it is both 3-connected and redundantly rigid. The term “redundantly rigid” means the
graph remains rigid after the removal of any single edge from the graph.

When the whole graph is not global rigid, redundant rigid, or even not rigid, finding subgraphs
satisfying above different rigid conditions is the crucial problem to investigating the inner structure
of the graph. More importantly, researchers want to partition the maximal rigid components

(MRCs), maximal redundant rigid components (MRRCs), and MGRC in the graph. Note that
a component is said “maximal rigid” if its “rigid” property will be broken by adding any other
neighboring node into the component. The maximal redundant rigid component and the maximal
global rigid component are defined in the same way.

From the application perspective, finding MRRCs and MGRCs also has great application values.
Finding MGRCs is the foundation for the crucial problem of identifying localizable nodes [11]. In
recently proposed component-based graph realization algorithms [13, 19], these algorithms desire
to extract all the MGRCs at first so that these reliable components can be realized in priority to
avoid the flexibility impacts of the sparse components.

Because of above great theoretical and application values, finding the subgraphs satisfying dif-
ferent kinds of rigidity properties has also attracted great research attention. Early results can be
categorized into theoretical and algorithmic two categories:

(1) Early theoretical results focused on the conditions for identifying whether the whole graph
is rigid, redundant rigid, or global rigid. In �d ,d ≤ 2, the combinatorial necessary condi-
tions are proposed for identifying rigid and redundant rigid graphs [4]. Later, for identifying
generic global rigid graphs, Jackson and Jordan [8] state that a graph is generically globally
rigid in the plane if and only if it is 3-connected and redundantly rigid. Servatius et al., [17]
further present theories that in a redundantly rigid graph, the leaves of its 3-connected tree
are globally rigid. But the combinatorial (connectivity and edge counting based) necessary
and sufficient condition for identifying rigid and global rigid graphs in �d , d ≥ 3 is still
open. This article therefore also focuses on efficient algorithms in�2.

(2) Despite of above theoretical works, from algorithm perspective, PebbleGame [9] is a funda-
mental algorithm, which finds the MRCs in generic 2D graphs by using an efficient pebble
searching algorithm. PebbleGame can also find redundant rigid components, which they
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call ORs in their paper. All these works can be done in O (mn) time where n is the number
of nodes and m is the number of edges. But PebbleGame does not output the MRRCs. To
the best of our knowledge, even in �2, the efficient algorithms to extract the MRRCs and
MGRCs from generic graphs are still open. An efficient and handy toolbox to carry out the
above fundamental rigidity-based partition tasks is highly desired.

This article first presents conditions and algorithms to merge the ORs detected by PebbleGame
to form MRRCs. If MRRCs can be successfully partitioned, an intuitive way to find MGRCs is to find
3-connected components (3CC) in each MRRC. The 3-connected component partition problem
can be conducted by SPQR-tree algorithm [3], which detects all binary vertex cuts in the graph in
O (m + n) time. But partitioning the cutting vertices found by SPQR-tree in MRRC may generate
new binary vertex cuts in the decomposed components, so the SPQR-tree algorithm needs to be
called recursively in the partitioned components, which is not efficient. We present an efficient
local optimization algorithm to avoid recursive calls of the SPQR-tree algorithm.

The key contributions and novelties of this article are as follows.

(1) A pipeline to find the MRC, MRRC, 3CC, and MGRC in 2D generic graphs is presented.
(2) Conditions and an efficient algorithm of merging ORs returned by PebbleGame are presented.

The algorithm is proven to detect all the MRRCs. We show the complexity of component
merging is linear to the number of nodes in the components, so the complexity of MRRC
partition is O (mn), which is the same as the PebbleGame for MRC partition.

(3) An efficient algorithm exploiting SPQR-tree partition to decompose 3CC from the MRRCs
is proposed to extract the MGRCs. A local optimization method is proposed so the SPQR-
tree algorithm needs to be called only a small number of times and all the MGRCs can be
detected efficiently from an MRRC. The performances of the local optimization are verified in
networks of different densities, which shows it contributes the most to the sparse networks.

(4) Above algorithms are aggregated into a handy toolbox called GPART for rigidity-based
graph decomposition. GPART is outsourced at https://github.com/inlab-group/gpart. Exten-
sive experiments in different kinds of network settings are conducted, which demonstrate
the characteristics of MRRCs and MGRCs and verify the validity and effectiveness of GPART.

2 BACKGROUND AND PRELIMINARIES

We assume G = (V ,E,D) is a graph without multiple edges and self-loops, and its point set and
edge set are V and E, respectively. D is the partially measured distance set. Let’s suppose |V | = n
and |E | =m.

Definition 1 (Realization). If p = {p1,p2, . . . ,pn } ∈ �2×n is a mapping from V to �2 while
satisfying all the edge constraints in D, p is called a realization of G in�2.

Note that we also assume G is generic, that the vertex coordinates are algebraic independent
over rationals [1].

2.1 Maximal Rigid Component (MRC)

Rigidity is defined to judge whether the shape of the graph can be deformed continuously while
respecting all edges’ length constraints. Assuming p is a realization of G, and let p (i ) and p (j )
represent the coordinates of node i and j. Let vi and vj represent the instantaneous velocities of i
and j in a motion. If (1) holds for every (i, j ) ∈ E, the motion v (G ) = (v1,v2, . . . ,vn ) is called an
infinitesimal motion of G [7].

(vi −vj ) (p (i ) − p (j )) = 0. (1)
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Fig. 1. An example to illustrate the MRC, MRRC, and MGRC partition.

Apparently, any translation or rotation of all vertices in G as a whole is an infinitesimal motion.
These two types of motions are called trivial flexing motions. If a graphG contains only trivial flex-
ing motions, we call G is infinitesimal rigid. Because only the generic frameworks are concerned,
infinitesimal rigid is an equivalent concept of rigid [1].

Another important concept is independent. Consider n free points in�2, they have 2n degrees
of freedom in total. If an edge is added between two unconnected points, the degrees of freedom
of these n points will be reduced by one. However, when degrees of freedom of points have been
consumed, even if one more edge is added, the degrees of point freedom may not be decreased.
The edge that cannot reduce the degree of freedom of the system is called redundant edge. Let F
be a non-empty subset of E. If there are no redundant edges in F , then the edges in F are said
independent.

Definition 2 (Maximal Rigid Component). A rigid component C with vertex set Vc is a maximal
rigid component (MRC), if G[Vc ∪ k] is no longer rigid by adding any neighboring node k � Vc

into C .

2.2 Maximal Redundant Rigid Component (MRRC)

A graph G = (V ,E) is redundant rigid if G (V ,E − e ) is still rigid after removing any edge e from E
so that we can define the concept of MRRC.

Definition 3 (Maximal Redundant Rigid Component). A redundant rigid componentC with vertex
setVc is an MRRC ifG[Vc ∪k] is no longer redundant rigid by adding any neighboring node k � Vc

into C .

2.3 Maximal Global Rigid Component (MGRC)

Considering p and q are two realizations of G, if ‖p(u) − p(v )‖ = ‖q(u) − q(v )‖ for every pair
of (u,v ) ∈ V , p and q are called congruent. If any two realizations of G are congruent, G is called
globally rigid. It can be seen from its definition that global rigidity means that the “shape” of a
graph is certain. The concept of maximal global rigid component is therefore defined.

Definition 4 (Maximal Global Rigid Component). A global rigid component C with vertex set Vc

is maximal, i.e., is an MGRC, if C[Vc ∪ k] is no longer global rigid after adding any neighboring
node k � Vc into C .

Figure 1 gives an example, in which the MRC, MRRC, and MGRC are partitioned and highlighted
in different colors. It can be seen that the MRCs, MRRCs, and MGRCs have an inclusion relation-
ship. MRRCs are subgraphs of MRCs, and MGRCs are subgraphs of MRRCs. Note that there are
two MGRCs in one MRRC.

ACM Transactions on Sensor Networks, Vol. 19, No. 4, Article 86. Publication date: June 2023.



GPART: Partitioning Maximal Redundant Rigid and MGRCs in Generic Distance Graphs 86:5

Fig. 2. An example of MRC, MRRC, and MGRCs.

2.4 An Example of Application of MRC, MRRC, and MGRC

The most typical application of MRC, MRRC, and MGRC is in the problem of network localization.
One of the most important theorems in 2D network localization is that a network is localizable if
and only if it is an MGRC and has at least three anchors. Figure 2 gives a model that abstracts a two-
dimensional localization network into an undirected graph. The vertices in the graph represent
sensor nodes that can conduct ranging to neighbors. The edge between two vertices indicates that
the distance information between the two points is known after measurement. The black vertices
represent the anchor points.

The whole graph of Figure 2 is rigid because it contains only trivial flexing motions. So there
is only one MRC in Figure 2, which is itself. After removing vertex 0 in Figure 2, there is a graph
composed of three K4 (complete graphs with four vertices), which is an MRRC. But this MRRC is
not an MGRC, because it is obvious that only knowing the world coordinates of the three anchor
points 1, 4, and 5 is not enough to locate all vertices in other MRRCs. For example: by folding
vertices 2 and 8 along the edge (4, 6), the result also satisfies all distance measurements. That is,
there are two solutions to the world coordinates of vertices 2 and 8 and these two vertices cannot
be uniquely localized. The MGRCs in Figure 2 are actually the three K4s. So by finding the MGRCs,
we know whether the current number of anchor points is sufficient, and also know which points
cannot be uniquely localized. This is the value of dividing MGRCs.

2.5 Existing Detection Algorithms

PebbleGame in [9] proposed an efficient method to find MRCs. It can also find redundant rigid
components. But it does not output the MRRC. The condition for being global rigid is proposed
in [4], which requires the components to be both redundantly rigid and 3-connected. But it does
not provide an algorithm to find the MGRCs.

In network localization society, some algorithms have been proposed to find localizable nodes.
Triangle protocols (TP) [12], Wheel extension (WE) [24], Triangle Bars (TB) [16], and Trian-

gle Extension (TE) [22] are distributed algorithms to find localizable nodes using extension-based
methods. These distributed algorithms are based on sufficient trilateration or wheel graph condi-
tions which cannot guarantee to detect all localizable nodes.

Algorithms have also been proposed for finding localizable nodes by maximum flowing algo-
rithms. RR3P [23] requires the nodes to be inside redundantly rigid components and each node
has at least three node-disjoint paths to anchors. The node-disjoint paths can be found by the max-
imum flow algorithm. In barycentric coordinate represented distributed linear localization, Itera-

tive maximum flow (IMF) [14] proposes a maximum flow-based algorithm to detect localizable
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Fig. 3. The main pipeline of GPART toolkit.

Table 1. The Key Outputs of GPART and Time Complexity

Input Output Complexity

G1 (V ,E,D2 ) MRCs in G O (mn3 )
MRRCs in G O (mn)
MGRCs in G O (mn)
3CCs in G O (m + n)

1Graph G with nodes set V and edges set E .
2Distance matrix.
3n vertices and m edges.

nodes. Flipping free conditions [15] are proposed to find components without flipping ambiguities.
But RR3P, IMF, and the flipping-free conditions still detect localizable nodes based on sufficient con-
ditions. They cannot guarantee to detect all localizable nodes and cannot decompose the MGRC.

3 PARTITION METHODOLOGIES

We propose a pipeline to efficiently partition the MRRCs and MGRCs for given distance graphs
and assemble the algorithms into a GPART framework. The pipeline of GPART is shown in
Figure 3. Given a graph G = (V ,E) in �2, GPART firstly processes the graph to detect MRCs
by PebbleGame, which also detects the over-constrained regions, which are redundant rigid
components. We propose conditions to merge these ORs to form the MRRCs. After that, in each
MRRC, an efficient SPQR-tree algorithm is conducted to decompose an MRRC into 3CCs. We
prove that the decomposed 3CCs in the MRRC must be redundantly rigid so that they are global
rigid. We propose an efficient local optimization algorithm to exclude unnecessary neighboring
nodes of the cutting pairs found by SPQR-tree so that the SPQR-tree algorithm needs to be run a
much smaller number of times. We also prove that these decomposed global rigid components are
maximal.

Table 1 summarizes the input, output, and complexity of computing each output in our
developed GPART toolbox. In overall, GPART can output MRCs, MRRCs, and MGRCs for an input
graph G with n vertices andm edges in O (mn) time. We present these algorithms accordingly.

3.1 MRC Detection

Given G = (V ,E) in �2, MRCs are detected by PebbleGame [9] through a pebble covering and a
labeling process. In initialization, PebbleGame assigns two pebbles to each vertex, representing the
two degrees of freedom.
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Fig. 4. An example of generating an over-constraint region.

3.1.1 Pebble Covering. The pebble covering step processes each edge to find independent edges
and constructs a directed graph H = (V , F ).

It starts by setting E ′ = E and takes any edge e from E ′. Suppose the two vertices of e are u
and v, respectively. Vertex u conducts a seeking operation until the number of free pebbles on u
reaches two or a certain seeking ends in failure. The operation seeking starts from u and performs
a depth-first search on graph H = (V , F ) to find a vertexw (w � u,v) with at least one free pebble.
Suppose the edges on the path from u to w are e1, e2, . . . , ek , then the direction of ek , ek−1, . . . , e1

will be reversed in turn in F , and finally u will have one more pebble and w has one less pebble at
the same time.

If both u andv successfully collect two pebbles, a new directed edge e ′ from u tov is added into
F , and the edge e ′ consumes a pebble of u. Then E ′ = E ′ − e . If E ′ is not empty, the process will
start over on the next unvisited edge in E until E is empty. For more details, see [9].

3.1.2 Labeling Process. Based on H = (V , F ) returned by pebble covering, a queue Q is created
from empty. A new cluster label i is introduced, and an unmarked edge e in E is selected. Then
e collects 3 pebbles from its two vertices through pebble seeking and the two vertices incident to
e are added into Q . Then Q .pop (x ). Suppose the neighbors of x in G are Vx . For every u ∈ Vx , a
depth-first search is started from u and performed on H to try to find a vertex with a free pebble
or with a floppy mark. Then one of the following two situations must happen:

(1) If the search for free pebbles fails, all vertices passed in the depth-first search are marked as
“rigid”, and are added to the tail of Q .

(2) If a vertex that has free pebbles or has a floppy mark is found (let it be w), then all vertices
on the search path from u to w are marked as floppy.

The process will be repeated until Q is empty. When Q is empty, for every e ∈ E, if both of its
two vertices are marked as rigid, then e is labeled by i . All the marks on the vertices will be
cleared, and the progress goes back to checking another unmarked edge in E until all edges in E
have been marked. After completing the above process, all edges with the same label constitute a
maximum rigid component.

3.1.3 Over-constrained Region. PebbleGame also finds the ORs, which are identical to the
concept of redundant rigid components in this paper. In each seeking operation, if the fourth
free pebble is not found by the depth-first search, it means the edge is redundant. Then all the
vertices passed through during this seeking operation and the edges between these vertices
constitute a redundant rigid subgraph. In PebbleGame, these redundant rigid subgraphs are called
over-constraint regions (ORs). Taking Figure 4 as an example, which shows the process of how
the ORs are detected in PebbleGame. In Figure 4(b), all 8 edges in black have found pebble cover.
In Figure 4(c), when the yellow edge wants to find a pebble cover, it seeks pebbles as shown in
Figure 4(d) but fails to find a pebble cover. So all the vertices passed through during this seeking
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Fig. 5. Merging two redundant rigid components using Case 1 of Theorem 5.

Fig. 6. Merging redundant rigid components using Case 2 of Theorem 5.

operation and the edges between them constitute a redundant rigid subgraph as shown by the
subgraph with yellow edges.

Note that the ORs, i.e., redundant rigidity components detected by PebbleGame are not maximal.
We propose a merging method to find all the MRRCs.

3.2 MRRC Detection

In order to get the MRRCs, we propose the following conditions for merging redundant rigid
components returned by PebbleGame to form MRRCs.

Theorem 5 (Conditions to Merge Redundant Rigid Components). Case 1: If two redundant
rigid components G1 and G2 share more than two vertices, then G ′ = G1 ∪G2 is also redundant rigid.

Case 2: If multiple redundant rigid graphs {G1,G2, . . . ,Gm } each of which shares only one vertex
with another, we treat each redundant rigid graph as a “shrinked vertex” and the shared vertices as
edges between the shrinked vertices. This converts {G1,G2, . . . ,Gm } into a new graph S . Then if S is
rigid, G ′ = G1 ∪G2 ∪ · · · ∪Gm is redundant rigid.

Proof. The correctness of the first case has been proved in Lemma 1 of [19]. While for the
second case, all the vertices of S are redundant rigid components. The edges in S have shared
vertices of redundant rigid components in the original graph. So if we remove one edge e from the
merge graph G ′, the edge e must be removed from one of the redundant rigid components. Say
it is Gi without loss of generality. Since Gi is redundant rigid, Gi \ e must still be rigid. Since the
removal of e will not affect the edges in S , so S will not be flexed. Since the removal of e will not
affect other redundant rigid components, so G ′ \ e must still be rigid. Since the selection of e is
arbitrary, so G ′ is redundantly rigid. �

Figure 5 presents two examples that merge redundant rigid components using Case 1 of
Theorem 5. When two redundant rigid components share more than two vertices, they can be
merged to be a larger redundant rigid component.

Figure 6 gives an example that merges redundant rigid components using Case 2 of Theorem 5.
In Figure 6, the regions with different colors in the figure represent redundant rigid components.
We shrink each component into a vertex. The shared vertex between two redundant rigid compo-
nents is converted to an edge connecting the two shrinked vertices. This converts (b) in Figure 6 to
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Fig. 7. An example of decomposing an MRRC to two MGRCs.

(c). The converted graph S is rigid, so the merged graph of the three redundant rigid components
is redundant rigid.

Then we prove that by merging the ORs returned by PebbleGame, we can correctly find all the
MRRCs in the graph.

Theorem 6. Assuming set N = {N1,N2, . . .Nl } represents all the MRRC constructed by merging
the ORs returned by PebbleGame and set M = {M1,M2, . . .Mk } represents all MRRCs inG, then there
must be N = M .

Proof. Convention: E (G ) represents the edge set of graphG, andG (E) is a subgraph composed
of E as the edge set and the vertices connected by the edges in E as the vertex set.

For every Mi ∈ M , suppose that Nj1 ,Nj2 , . . .Njk
(k ≥ 0) are all MORs that satisfy E (Njt

) ∩
E (Mi ) � ∅(1 ≤ t ≤ k ), then because the definition of ‘maximum’ in MRRC, there must be
E (Njt

) ⊆ E (Mi ). Let N ∗ = Nj1 ∪Nj2 ∪ . . .Njk
, If E (Mi )−E (N ∗) � ∅, according to the property of re-

dundant rigid graph, there must be a redundant edge in E (Mi ) −E (N ∗). This redundant edge must
correspond to an over-constrained region, and this over-constrained region must also correspond
to a MOR which is not equal to any one of Nj1 ,Nj2 , . . .Njk

, this contradicts “Nj1 ,Nj2 , . . .Njk
are

all MORs that satisfy E (Njt
)∩E (Mi ) � ∅(1 ≤ t ≤ k )”. So E (Mi )−E (N ∗) = ∅ and k must be greater

than 0. Meanwhile, because of the definition of ‘maximum’ in MOR, the union of any two MORs
is not redundant rigid. But Mi is redundant rigid, so k must not be greater than 1. That means for
each Mi ∈ M , there exists exactly one Nj ∈ N such that Mi = Nj , therefore M ∈ N . Meanwhile,
because E (Mi ) − E (N ∗) = ∅, there is not a Nj not matching to any Mi . So for each Nj ∈ N , there
is exactly one Mi ∈ M equal to Nj by previous proof. Therefore, we also prove N ∈ M , and so that
N = M . �

So by Theorem 6, all MRRCs in G can be detected efficiently by merging the ORs returned by
PebbleGame until no OR can be merged with others. We then study how to partition the MGRCs
from the MRRCs.

3.3 MGRC Partition

3.3.1 Partition Methodologies. In�2, a graph is global rigid if it is both redundant rigid and 3-
connected [4]. Note that an MRRC must be 2-connected because it does not contain any flexing part,
but it may not be 3-connected, for an example shown in Figure 7. The key idea to detect MGRCs is
to decompose the MRRCs into 3CC. We will prove that the 3CC decomposed from an MRRC must
still be redundant rigid. So these decomposed 3CC are both 3-connected and redundant rigid, and
they are global rigid.

We first define a “Decomposition” operation by binary vertex cut in an MRRC. Suppose G is
an MRRC and {u,v} form a binary vertex cut set in G, which is also called a “separation pair”.
Note that a separation pair means the removal of these two vertices will disconnect the graph, as
{u,v} shown in Figure 7. If a 2-connected graph does not contain any separation pair, the graph
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is 3-connected. To find MGRCs, G will be decomposed into subgraphs divided by the separation
pairs.

Suppose {u,v} is a separation pair, if (u,v ) ∈ E,G is divided intoG1 andG2 where the edge (u,v )
is copied to be contained in both G1 and G2 and G1 ∩G2 = (u,v ). If (u,v ) � E, the vertices u and
v will be divided to be contained in both G1 and G2, so G1 ∩G2 = {u,v}, that they share only the
two vertices. The “Decomposition” operation will be conducted recursively in G1 and G2, until no
separation pair can be found in any decomposed subgraphs. Then all the decomposed subgraphs
are 3-connected.

Theorem 7. SupposeG1,G2, . . . ,Gk are the 3CC decomposed from an MRRC by the recursive “De-
composition” operation, then each of these 3CC must still be redundant rigid.

Proof. If (u,v ) ∈ E (G ), by the “Decomposition” method, G1 ∩G2 = (u,v ) and G1 = (G \G2) ∪
(u,v ), G2 = (G \ G1) ∪ (u,v ). After removing any edge e from G1 except (u,v ), G1 − e must still
be rigid, because if it is not rigid, the same operation of G − e must make G − e not rigid. This
contradicts with G is redundant rigid. If (u,v ) is removed, since G − (u,v ) is rigid there must be
G1 − (u,v ) and G2 − (u,v ) are rigid. Otherwise, G − (u,v ) cannot be rigid if it contains a flex
subgraph. The same proof holds for G2.

If (u,v ) ∈ E (G ), by the “Decomposition” method, G1 and G2 share only the two vertices {u,v}.
If e ∈ G1,G − e is rigid only when its subgraphG1 − e is rigid. SinceG − e is rigid, soG1 − e is rigid
and the same holds forG2. So after “Decomposition”,G1 andG2 are still redundant rigid. The same
process holds for further “Decomposition”. So finally all the decomposed 3CC from an MRRC are
redundant rigid. �

From the condition in [4], the decomposed 3CC are global rigid, since they are both 3-connected
and redundant rigid.

Theorem 8. The global rigid components decomposed from MRRCs by recursive decomposition are
maximal.

Proof. If any vertex outside such a global rigid component is added to it, the vertex is either
outside the redundant rigid component or can be separated by a separation pair. The component
after adding the vertex is no longer global rigid so the global rigid component is maximal. �

3.3.2 Naive Partition Algorithm. From the above discussions, the key problem is to find the sepa-
ration pairs. Fortunately, all the separation pairs in an MRRC can be found efficiently by SPQR-tree
algorithm [5, 6, 20] in O (n +m) time. To be self-contained, the details of the SPQR-Tree algorithm
for extracting 2-vertex cuts have been described in the Appendix.

We can then focus on the decomposition operations. For processing each separation pair, there
are two possible cases:

(1) Case 1: If there is an edge between the two nodes of a separation pair, the “decomposition”
operation will copy the edge into each decomposed component, so the decomposition will
not generate new separation pairs in each decomposed component.

(2) Case 2: If there is not an edge between the two separating nodes, the decomposition may
generate new separation pairs in the decomposed components. In this case, intuitively, the
SPQR-tree method needs to be checked recursively in each decomposed component to check
new separation pairs.

An example is shown in Figure 8. Nodes 1 and 2 are separation pairs in the graphG. By “decom-
position” operation,G is decomposed into S1 and S2. Note that in S2, {3, 4} become new separation
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Fig. 8. An example of cyclically generating new 2-vertex cuts in the process of decomposing MRRC.

pair. After decomposed by {3, 4}, node pair {5, 6} becomes one of the new separation pairs in the
decomposed component.

In Case 2 of the naive approach, the SPQR-tree algorithm needs to be called recursively in the
decomposed components, until no more 2-vertex cuts can be found. The recursive call of SPQR-
tree algorithm in the decomposed components of MRRC makes the MGRC partition inefficient.
We present a local optimization method to accelerate the naive approach.

3.3.3 Local Acceleration Method. We observe that the decomposition operation in Case 2 has a
special property.

Theorem 9 (Properties After Decomposition). Suppose u,v are the two cutting vertices of
Case 2. After decomposition by u, v , the decomposition will only reduce the degrees of the cutting
vertices, i.e., the copies of u and v in each component, which are on the boundary of each decomposed
component, and will not affect other nodes inside the components.

We can see this property clearly from Figure 8. The separation by 1 and 2 only affects the degrees
of 1 and 2 and will not affect the degrees of other nodes in S1 and S2.

Utilizing this property, we develop the following three local optimization methods to accelerate
the decomposition algorithm to extract MGRCs from each MRRC. After the local optimization, we
show that the SPQR-tree needs to be called much fewer times.

(1) Recursive deletion of nodes with degree 2 After decomposition by Case 2, if the cutting vertex
u or v has degree 2, it obviously does not belong to the 3-connected component in the final
MGRCs. So we can confidently delete the cutting vertex with degree 2, and recursively delete
the new node with degree 2 generated by the deletion. Only the nodes with degrees equal
to or higher than 3 will be retained in each decomposed component. The deletion operation
is local. In Figure 8, nodes 1 and 2 in the decomposition sub-graph S2 can be deleted.
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Fig. 9. The running steps comparison before and after acceleration of network in Figure 8. Pi represents the

operation of finding separation pairs and conducting decomposition.

(2) Components decomposed by only Case 1 do not need further judgment.
When there is an edge between the two cutting vertices, each sub-component after
decomposing contains this edge, which can ensure that the interior of the sub-component
maintains 3-connectivity. This is easy to deduce because all 2-vertex cuts are detected all at
once during decomposition. If there are all Case 1 vertex cuts, the decomposed components
preserve these edges to ensure that no new 2-vertex cuts can be generated. In addition,
since no edge is deleted, the sub-components obtained by decomposition also maintain
redundant rigid. Therefore, the components decomposed by only Case 1 can be output as
MGRC directly.

(3) Ignore K3 (triangle) in the decomposed components.
In addition, the sub-graph obtained by MRRC through decomposition is not necessarily
MRRC. For example, in Figure 8, the sub-component S2 obtained by decomposing {1, 2} is
obviously not redundant rigid. After the decomposition and deletion of nodes with degree
two, it is a triangle. The triangle is globally rigid. We skip the decomposition of K3 and
directly output it when the number of remaining nodes in the component is 3 after the
deletion of nodes with degree 2.

3.3.4 Naive Partition vs. Local Optimization. Let’s take Figure 8 as an example to analyze the
speed improvement brought by the acceleration method. Figure 8 is an MRRC as a whole. After
executing SPQR-tree, {1, 2} is detected as a separation pair. Since there is not an edge between
node 1 and node 2, it follows the Case 2 in the decomposition process. We compare the number
of calling SPQR-tree functions in the naive partition algorithm and that after local optimization.
We denote the algorithm before using the acceleration method by MGRC_naive and denote the
algorithm after using the acceleration method by MGRC_acce .

We use the letter P to represent the operation of calling SQPR-tree for finding separation pairs
and conducting decomposition. The subscript of P indicates the component that performs the corre-
sponding operations, for example, PS indicates that the operation is performed in the S component.
Note that this operation can also check whether a component is 3-connected. If no separation pair
is returned by PS then S is 3-connected.

Figure 8 shows the original graph S and its sub-modules. Figure 9 shows the comparison of the
executed steps when extracting MGRCs from the example in Figure 8. We divide the decomposition
step into the following three layers, corresponding to the layers in Figure 9.
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ALGORITHM 1: Find Maximal Global Rigid Component

Input: An MRRC G = (V ,E)
Output: Global rigid components, i.e., MGRCs

1 Initialize: Stack S ; ;

2 Put G into S ; r = −3 ;

3 while ¬S .empty do

4 Component r = S .pop () ;

5 if r . f laд == −1| |r . f laд == −2 then

6 MGRC ← r ;

7 Continue ;

8 Find 2-vertex cuts of Case 1 or Case 2 using SPQR − tree ;

9 if there is no 2-vertex cut in r then

10 r is 3-connected component ;

11 r . f laд = −1 ;

12 Continue ;

13 Separate r into M = {M1,M2, . . . ,Mn } ;

14 if Mi is decomposed by only separation pair in Case 1 then

15 Mi . f laд = −2 ;

16 else

17 Mi . f laд = −3 ;

18 S .push(M ) ;

19 Return MGRC ;

(1) The first layer. At first, we perform PS to obtain S1 and S2 according to the 2-vertex cut
{1, 2} in S . Since {1, 2} is a separation pair in Case 2, it is difficult to determine whether there
is a newly generated 2-vertex cut in S1 and S2. So further confirmation is required. In this
layer, the operation steps of the algorithms MGRC_naive and MGRC_acce are the same, i.e.,
PS , PS1 , PS2 .

(2) The second layer. It is found that S1 is 3-connected in PS1 , so it can be directly output as
MGRC. Since there exist new 2-vertex cuts in S2, in MGRC_naive algorithm, S2 is further
decomposed into three parts, t1, S4, and S3, so MGRC_naive calls Pt1 , PS3 , PS4 to further
decompose each component. In MGRC_acce , t1 is deleted by optimization rule 1, so it only
calls PS3 , PS4 .

(3) The third layer. In side S3, and S4, MGRC_naive still need further decomposition and verifi-
cation in every submodule t2 to t7 and S5, S6, S7. But MGRC_acce recognizes the submodules
from t2 to t7 are triangles. They are directly output as MRGCs using the third optimization
rule without calling SPQR-tree. In PS4 , {5, 6} is a separation pair of Case 1, so S6 and S7 are
directly output as MGRCs. In this layer, MGRC_acce conducts only PS5 .

Algorithm 1 presents the MGRC_acce algorithm which takes an MRRC as input and outputs the
MGRCs. In Algorithm 1, the stack S is initialized to store the MRRC to be decomposed. After we
complete the decomposition of an MRRC (line 8), the obtained sub-graph needs to be restored in
S for 3-connectivity verification and further decomposition unless it is a 3-connected component
marked -1 (line 9–12) or a component decomposed by only separation pair in Case 1 marked -2
(line 14–17). The 3-connectivity verification and further decomposition are mainly because the sub-
graph obtained by the decomposition is not necessarily 3-connected and may exist a new 2-vertex
cut generated during the decomposition.
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4 PERFORMANCE ANALYSIS

The time complexity and the partition performances of GPART are presented in this section.

4.1 Time Complexity

Theorem 10 (Time Complexity of MRRC Decomposition). The time complexity of partitioning
MRRCs is O (mn).

Proof. According to the analysis of the article [18], the time complexity of implementing a
pebble game in a sparse graph isO (n2), and in a dense graph (m is close to n2) it will reachO (mn),
where n is the number of nodes and m is the number of edges. The time complexity of MRRC
detection is to check and merge the over-constrained region labels for nodes, which is in O (n).
Therefore the overall complexity is at most O (mn). �

Theorem 11 (Time Complexity of MGRC Decomposition). The time complexity of partitioning
MGRCs is O (mn).

Proof. For the MGRC partition, in the worst case, the entire graph is an MRRC and at every
time of the decomposition, the smallest decomposed redundant rigid component contains at least
two nodes and five edges. Otherwise, if the decomposed component is less than two nodes and
five edges, the original graph will not be redundant rigid. So in the worst case, the numbers of de-
composition operation is at most min{m5 ,

n
2 }. Since the time complexity of verifying 3-connectivity

and finding binary vertex cuts by SPQR-tree in each decomposed component is O (m + n) for the
component with m edges and n nodes, the worst case overall time complexity for partitioning
MGRCs is, therefore, min{m10 (m + n), n

4 (m + n)}. So the total time complexity of MGRC partition
can be upper bounded by O (mn). �

4.2 Visualization

We conduct simulations in Matlab2019 to visualize the MRC, MRRC, and MGRC decomposition
processes. For showing the partitioned components clearly, the graph partition results for a
network with 60 nodes are visually shown from Figure 10(a) to Figure 10(d). Different components
are marked with lines of different colors. It can be seen that a large MRC and several small ones
are detected as shown in Figure 9(b). The MRC contains only one MRRC inside it shown in
Figure 10(c). Finally, the MRRC is partitioned into an MGRC with several triangle components
as shown in Figure 10(d). A larger example is shown from Figure 10(e) to Figure 10(h), which
contains 210 nodes. The graph is partitioned into 12 MRCs, in which more MRRCs are partitioned,
and finally, a large set of MGRCs are detected.

Statistical analysis is further conducted. We firstly evaluate the edge coverage ratio by the MRCs,
MRRCs, and MGRCs in different network settings, which is the number of edges in the components
over the total number of edges. From sparse networks with average node degree 2, to dense net-
works with average node degree 9, two hundred networks are randomly generated for each node
degree setting. The mean edge coverage ratio and the variance are shown in Figure 11. MRCs have
much larger coverage ratio than MRRCs and MGRCs. The coverage ratio of MGRCs is only slightly
lower than that of MRRCs.

The number of extracted components in each graph is an important indicator to the compo-
nent size, which is statistically counted in different networks. The mean value and the variance
are shown in Figure 12. In sparse networks, many small-size MRCs are detected and the num-
ber of MRRCs and MGRCs is much lower since they require stricter connectivity conditions. In
dense networks, the number of components becomes much smaller, which means the size of these
components has become quite large for the good connectivity of the graph.
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Fig. 10. Visualization of the MRC, MRRC, and MGRC detection in two graphs.

Fig. 11. Edge coverage ratios by different kinds of components.

4.3 Algorithm Efficiency

To evaluate the efficiency of the toolset in networks with different sparsity, we evaluate the running
time of the proposed algorithms for networks whose node number varies from 75 to 4525 using
50 nodes as the growth step. Ten graphs with random node positions are generated at each node
number and the average running time is counted and shown in Figure 13 for sparse networks with
average node degrees from 2–3. Figure 14 shows the running time of different algorithms for these
networks when the node degrees are from 2 to 3.

Then we increase the average node degree to about 4.5 to 5.5. Figure 15 shows the running time
of different algorithms for these networks when the node degrees are from 4.5 to 5.5.

Figure 16 shows the running times of different algorithms for dense networks with degrees
ranging from 8 to 9. Matlab’s tic and toc functions were used to time the algorithms. In the figures,
the MGRC_acce stands for accelerated MGRCs extraction algorithm while the MGRC_naive stands
for unaccelerated MGRCs extraction algorithm.
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Fig. 12. Average number of components extracted in different networks.

Fig. 13. The average running time as the number of network nodes increases in a network with sparsity 2–3.

Figure 13 shows the variation of the running time of each algorithm with the increase of the
number of nodes when the node degree is controlled to be ranging from 2–3. It can be seen that the
running time of MGRC_acce is much shortened than MGRC_naive. In order to more intuitively
see the change of the partitioned MRRCs as the number of nodes increases, Figure 14 highlights
the partitioned MRRCs in a set of networks with different numbers of nodes. It can be seen that
in an extremely sparse network, as the number of nodes increases, the size of a single MRRC does
not change much, but the overall number of MRRCs continues to increase. At the same time, due
to the sparseness of the network, it is almost impossible to have separation pair of Case 2 in MRRC
and there will be some triangles or non-triconnected components composed of multiple triangles
in MRRC. In this case, the proposed local optimization rules help to greatly reduce the number of
computation costs, to avoid calling SPQR-tree on the sparse triangles.
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Fig. 14. Visualization of the MRRCs for different node networks with degrees from 2–3.

Fig. 15. The average running time as the number of network nodes increases in a network with sparsity

4.5–5.5.

In dense networks when the average node degree ranges from 8–9, in MRRCs, there is a high
probability that there are no or only a few new 2-vertex cuts in the subcomponents. In such case,
the accelerated MGRC_acce algorithm only needs to output directly after deleting the node with
degree 2 in the subcomponent, while the MGRC_naive algorithm still needs to perform SPQR-
Tree decomposition in each subcomponent to detect whether there is a new 2-vertex cut in it.
This difference causes the running time difference between the two to gradually increase with the
growth of the network size.

Figure 17 further gives an example to show the partitioned MRRCs for networks with different
numbers of nodes while the average node degree is controlled to be ranging from 8–9. We can
intuitively see the correctness of our previous discussion.
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Fig. 16. The average running time as the number of network nodes increases in a network with sparsity 8–9.

Fig. 17. Visualization of the MRRCs for different node networks with degrees from 8–9.

To evaluate the average efficiency of the toolkit, the network degree is varied from 2–12 when
the network has 1,000 nodes. Fifty random graphs with a certain node degree and node number are
generated and the average running time is counted and shown in Figure 18. The time of extracting
MRCs, 3CCs, MRRCs, and MGRCs are compared. As the network density increases, the difference
between MGRC_acce and MGRC_naive gradually shrinks, while the running times of partitioning
3CCs, MRCs, and MRRCs gradually increase.
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Fig. 18. The average running time of the network with different node degrees and fixed number of nodes.

5 CONCLUSION

This article presents an effective and efficient toolkit, i.e., GPART for partitioning the MRCs, MR-
RCs, and MGRCs in 2D graphs. The algorithm details are given and theoretical explanations of
how the algorithm guarantees the properties of each component are presented. Extensive evalu-
ations show the validity and high efficiency of GPART. The toolkit is also outsourced on GitHub.
In future work, we will further study rigidity-based partition algorithms in 3D and for redundant
global rigid components.

A APPENDIX

For being self-contained, we give a detailed introduction to the SPQR-Tree algorithm and a detailed
example of MRC partition by PebbleGame.

A.1 SPQR-Tree

Two types of separation pairs are defined in [5]. All can be detected delicately by three times of
Depth-First Search (DFS). The algorithm routine will be interpreted using an example. Consid-
ering a node pair {a,b}, it is a:

(1) Type-1 pair, if some segment Si with at least two edges has only a and b in common with
a cycle c , and there is any vertex v does not lie in Si .

(2) Type-2 pair, if each segment connects to a cycle c only through either vertex on path p
or vertices on path q, together with a and b. (p and q are the two disjoint paths connecting
vertex a and b on cycle c).

For a type-1 pair, as shown in the Figure 19(a), cycle c is divided into paths p and q with a and b
as endpoints. Cycle c is connected to Segment Si only through node a and b and there is at least a
vertexv that is not in Si . Then, when the node pair {a,b} and its corresponding edges are removed,
the graph G is broken into at least two parts, vertex v with path p and segment Si . In the type-2
condition, any segment Si is required to be connected to the cycle c only by the vertices on the path
p or path q with the vertices a and b. The positive and negative examples are given in Figure 19(b).
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Fig. 19. Schematic diagram of the type-1 and type-2 conditions in the theorem.

Fig. 20. (a) The original graph G and palm tree P; (b) The palm tree P with the LowPT 1 and LowPT 2 value

of each node marked in brackets in sequence.

We denote the intersections of Si with path p as w1 and w2 and the intersection with path q as
v . v,w1,w2 � a,b. In the left picture, since Si is connected to both paths p and q, respectively,
disconnecting {a,b} does not separate the graphG, while in the right picture, Si is only connected
to path q, removing {a,b} breaks G into Si and p two parts.

In order to find the separation pairs, the DFS-based searching method is mainly divided into
four steps:

Step 1: Use DFS to convert the original graph G into a directed graph, called Palm tree P . The
Palm tree contains two types of arcs. (1) tree arcs which are set up during DFS, point from nodes
with small numbers to nodes with larger numbers. They are shown by green arcs in Figure 20(a).
(2) frond arcs which are pointing from nodes with large numbers to those with small numbers,
shown in red. At the same time, several node attributes, i.e., the Number , LowPT 1, LowPT 2, and
Father of each node are calculated during DFS. Number is the order of being visited and Father
is the preceding node in DFS. LowPT1 and LowPT2 of a node v record the lowest and the second
lowest node number that can be reached from v on the directed Palm tree using the tree arcs and
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Fig. 21. (a) The sorted neighbors of each node; (b) generated paths.

one frond arc. Figure 20(b) gives an example. The Number (LowPT1, LowPT2) are given beside each
node. All these attributes are calculated by one DFS in [5].

Step 2: The adjacency list A(v ) of each node v is processed, so that for each node v , its tree arc
neighbors are arranged in ascending order according to the LowPT1 values of the neighbors, and its
frond neighbors are sorted in ascending order according to the Numbers of the neighbors. In this
way, for a nodev , suppose its neighbor nodes A(v ) arew1,w2, . . . ,wn . Then, the neighbors satisfy
LowPT1(w1) < LowPT1(w2) < · · · < LowPT1(wn ) if (v,wi ) are tree arcs and w1 < w2 < · · · < wn

if (v,wi ) are fronds. The updated adjacency list A of P is demonstrated in Figure 21(a).
Step 3: The updated adjacency list A is used to traverse the Palm tree to generate a cycle c and

its corresponding segments. Still taking Figure 20(b) as an example, starting by DFS from node
1, until a frond (10,1) is found. Then the current path 1 → 2 → · · · → 10 → 1 is the detected
cycle. After that, other neighbor edges of 10 are visited recursively to generate segment paths
intersecting with the cycle, e.g., 10→ 11→ 8. If all neighboring edges of 10 have been visited, the
procedure will go to vertex 11 until all edges in P have been visited. The generated cycle c and its
segments (other paths beyond cycle c) are shown in Figure 21(b).

Step 4: Finally, another DFS is used to traverse the generated path and verify all separation pair

candidates. Let v → w denotes (v,w ) is a tree arc in P . Let v
∗→ w denote w is a descendant of v .

Let D (v ) denotes all descendant of v , and any vertex is the descendant of itself.
It has been proved in [5] that if there exists a separation pair {a,b} in graph G, then both node

a and b belong to cycle c or segment Si . Since each segment and cycle can be converted into each
other (Si can add a segment on cycle c to form a new cycle), the above separation pair determination
is only for cycle c . Although the above conditions are intuitive and easy to understand, it is difficult
to directly check whether the node pair is a separation pair in the algorithm. [5] proposes a further
judgment condition:

(1) Type-1: there is a vertex r � a,b such that a
∗→ b → r . LowPT1(r ) = a, LowPT2(r ) ≥ b and

there is vertex s � r ,a,b.
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Fig. 22. Examples of type-1 separation pair and type-2 separation pair.

(2) Type-2: there is vertex r � a,b such that a → r
∗→ b, a,b, r lie on a common path. {a,b} is a

separation pair if any of the following cases holds:
(a) If for every frond (x ,y) with r ≤ x < b, there is y ≥ a.

(b) If for every frond (x ,y) with a < y < b (a � 1) and b → w
∗→ x , there is LowPT1(w) ≥ a.

For Type-1 pair {a,b}, according to the definition in the theorem, we only need to find a segment
Si , so that Si and cycle c are only connected at vertex a and b, and there exists another vertex s that
does not belong to Si , then {a,b} is a separation pair for removing ab would disconnect Si from
vertex s .

In Figure 23, we denote the child node of b as r , and D (r ) as all descendant nodes of r (includ-
ing r itself). Assuming that there is a node v , consider the following two cases, a < v < b and
v ∈ D (r ). For the case of a < v < b in Figure 23(b), there is LowPT1(v ) = a and LowPT2(v )
≤ minb,LowPT 2(r ) since LowPT1(r ) = a, LowPT2(r ) ≥ b, which implies the frond arc of node
v can only connect to nodes between a and b. For the case of v ∈ D (r ) in Figure 23(c), if the
node v has a front arc connected between a and b, then there must be LowPT2(r ) < b, which
contradicts the condition of Type-1. In other words, the front arc of node v can only connect to
nodes belonging to D (r ) or node a or node b. So as shown in Figure 23(a), the type-1 condition
can guarantee that removing {a,b} breaksG into D (r ) and the set of nodes between nodes a and b
including node s , D (r ) is Si . Figure 22(a) gives an example of detecting Type-1 pair. For node pair
{1, 4}, a=1,b = 4, r = 7 and D (7) = {7, 8, 9, 10, 11} (note that r � 5, 6, since LowPT 1(r ) = a = 1).
Then there is s = 5 or 6 and s � D (7). So {1, 4} is a separation pair breaking the graph into two
components: s (in yellow) and D (r ) (in green).
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Fig. 23. The connection between the two judgment conditions of the type-1 separation pair.

Fig. 24. The connection between the two judgment conditions of the type-2 separation pair.

Type-2 conditions include two cases, which will be divided into two points to explain below.

(1) For condition r ≤ x < b, y ≥ a, we define S = D (b)\D (r ) = {x |r ≤ x < b} shown in
Figure 24(a) colored yellow, If x ∈ S , then y ≥ a. The condition y ≥ a can guarantee that
S will not connect to a node outside of S ∪ a. As shown in Figure 23 and 24, the cycle c

is divided into two parts a
pathp
→ b and b

pathq
→ a by the separation pair {a,b}, Si is all the

frond arc in S . Figure 22(b)(a) gives an example of detecting Type-2(a) pair. For node pair
{1, 7}, a=1, r =2,b=7 and S = {2, 3, 4, 5, 6}. Then all frond arcs in S are connected to vertices
greater thana, which is nodes in S . When explaining Type-1, we also used the node pair {1, 7}
as an example. In the case of type-1, the separation pair {a,b} divides G into D (r ) (x ≥ 7)
and several other parts, while in the example of type-2(a), G is divided into S(2 ≤ x < 7)
and several other parts. Separation pair {1, 7} can satisfy both conditions because they just
divide G into two parts S and D (r ).

(2) For condition a < y < b in Figure 24(b), we consider the child of b is w1,w2, . . . ,wn , which
is the candidate of w . Then there is a index i0, for i < i0, LowPT1(wi ) < a and for i > i0,
LowPT1(wi ) ≥ a. We denote D (wi ) as all the descendant nodes of wi and S∗ as the union
D (wi ) for LowPT1(wi ) ≥ a. If x ∈ S∗, then y ∈ S with at least one node r . The condition
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Fig. 25. The process of collecting 3 free pebbles on the two vertices of the edge (1, 2).

Fig. 26. The process of finding the MRC from the edge (1, 2).

LowPT1(w ) ≥ a and a < y < b can guarantee that S∗ will not connect to a node outside S . In
another words, for x ∈ S∗ there is no frond (x ,y) with 1 ≤ y ≤ a, Then removing {a,b} will
separate S∗ ∪ S from graph.

Furthermore, if we divide cycle c into two parts, a
pathp
→ b (colored in orange) and b

pathq
→ a

(colored in blue) in Figure 24(c) (pathp must be inwi (i < i0) because i > i0 has LowPT1(wi ) >
a), then the type-2 condition is to make sure the segment S ∪ S∗ will only be connected to
vertices in path p through frond arc and the segment between {1,a} will only connect to
path q.
We give an example in Figure 22(b) that a = 7, r = 8,b = 10,w = 11 which is eligible, and
S, S∗ is marked with bright blue.

A.2 An Example of Identifying MRCs by PebbleGame

This section takes Figure 4 as an example to show the process of identifying MRCs.
Figure 25 is the process of collecting 3 free pebbles on the two vertices of the edge (1, 2).
Figure 26 is the process of finding the MRC from the edge (1, 2): in the figure (f), the two vertices

of (1, 2) are first marked as “rigid”. Figure (g) represents the search for free pebbles starting from
the neighbors of {1, 2}, since it is not found, the vertices 3 and 4 passed through in the search
process are also marked as “rigid”, and the rigid set is expanded to {1, 2, 3, 4} at this time. Figure (h)
shows that starting from the neighbor of {1, 2, 3, 4} - vertex 5, a free pebble is found at vertex 6, and
all the vertices on the search path 5->6 are marked as “floppy”, At this time, all the neighbors of
{1, 2, 3, 4} have been marked and cannot be expanded any more. Figure (i) represents the identified
MRC= G[{1, 2, 3, 4}].

Figure 27 shows the process of collecting three free pebbles at the two vertices of the edge (3, 5).
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Fig. 27. The process of collecting three free pebbles at the two vertices of the edge (3, 5).

Fig. 28. The process of finding the MRC from the edge (3, 5).

Figure 28 shows the process of finding the MRC from the edge (3, 5): In graph (n), the two
vertices of (3, 5) are first marked as “rigid”. Figure (o) represents the search for free pebbles starting
from the neighbors of {3, 5}. The yellow arrows represent the search path. Since a free pebble is
found at vertex 1, all the vertices on the search path 6->4->2->1 are marked as “floppy”, At this
time, all neighbors of {3, 5} have been marked and cannot be extended anymore, and Figure (p)
represents the identified MRC = G[{3, 5}].

REFERENCES

[1] Robert Connelly, Tibor Jordán, and Walter Whiteley. 2013. Generic global rigidity of body–bar frameworks. Journal

of Combinatorial Theory, Series B 103, 6 (2013), 689–705.

[2] Steven J. Gortler, Alexander D. Healy, and Dylan P. Thurston. 2010. Characterizing generic global rigidity. American

Journal of Mathematics 132, 4 (2010), 897–939.

[3] Carsten Gutwenger and Petra Mutzel. 2001. A linear time implementation of SPQR-Trees. In Graph Drawing, Gerhard

Goos, Juris Hartmanis, Jan van Leeuwen, and Joe Marks (Eds.). Vol. 1984. Springer Heidelberg, Heidelberg, 77–90.

DOI:https://doi.org/10.1007/3-540-44541-2_8. Series Title: Lecture Notes in Computer Science.

[4] Bruce Hendrickson. 1992. Conditions for unique graph realizations. SIAM Journal on Computing 21, 1 (1992), 65–84.

[5] J. E. Hopcroft and R. E. Tarjan. 1972. Finding the triconnected components of a graph. Technical Report TR 140, Dept.

of Computer Science, Cornell Univ.

[6] J. E. Hopcroft and R. E. Tarjan. 1973. Dividing a graph into triconnected components. SIAM J. Comput. 2, 3 (1973),

135–158. DOI:https://doi.org/10.1137/0202012. arXiv:https://doi.org/10.1137/0202012

[7] Bill Jackson. 2007. Notes on the rigidity of graphs. In Levico Conference Notes, Vol. 4.

[8] Bill Jackson and Tibor Jordán. 2005. Connected rigidity matroids and unique realizations of graphs. Journal of Com-

binatorial Theory, Series B 94, 1 (May 2005), 1–29. DOI:https://doi.org/10.1016/j.jctb.2004.11.002

ACM Transactions on Sensor Networks, Vol. 19, No. 4, Article 86. Publication date: June 2023.

https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1137/0202012
http://arxiv.org/abs/https://doi.org/10.1137/0202012
https://doi.org/10.1016/j.jctb.2004.11.002


86:26 Y. Zhang et al.

[9] Donald J. Jacobs and Bruce Hendrickson. 1997. An algorithm for two-dimensional rigidity percolation: The Pebble

game. J. Comput. Phys. 137, 2 (1997), 346–365.

[10] G. Laman. 1970. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics 4, 4 (Oct.

1970), 331–340. DOI:https://doi.org/10.1007/BF01534980

[11] Yunhao Liu, Zheng Yang, Xiaoping Wang, and Lirong Jian. 2010. Location, localization, and localizability. Journal of

Computer Science and Technology 25, 2 (2010), 274–297.

[12] David C. Moore, J. Leonard, D. Rus, and S. Teller. 2004. Robust distributed network localization with noisy range

measurements. In SenSys’04. DOI:https://doi.org/10.1145/1031495.1031502

[13] Haodi Ping, Yongcai Wang, and Deying Li. 2020. HGO: Hierarchical graph optimization for accurate, efficient, and

robust network localization. In Proceedings of the 29th International Conference on Computer Communications and

Networks, ICCCN. 1–9. DOI:https://doi.org/10.1109/ICCCN49398.2020.9209620

[14] Haodi Ping, Yongcai Wang, Xingfa Shen, Deying Li, and Wenping Chen. 2022. On node localizability identification in

barycentric linear localization. ACM Trans. Sen. Netw. 19, 1, Article 19 (Dec 2022), 26 pages. https://doi.org/10.1145/

3547143

[15] H. Ping, Y. Wang, D. Li, and T. Sun. 2022. Flipping free conditions and their application in sparse network localization.

IEEE Transactions on Mobile Computing 21, 3 (2022), 986–1003.

[16] Buddhadeb Sau and Krishnendu Mukhopadhyaya. 2013. Localizability of wireless sensor networks: Beyond wheel

extension. In Stabilization, Safety, and Security of Distributed Systems , Teruo Higashino, Yoshiaki Katayama, Toshim-

itsu Masuzawa, Maria Potop-Butucaru, and Masafumi Yamashita (Eds.). Lecture Notes in Computer Science, Springer

International Publishing, Cham, 326–340. DOI:https://doi.org/10.1007/978-3-319-03089-0_23

[17] Brigitte Servatius and Herman Servatius. 2010. Rigidity, global rigidity, and graph decomposition. European Journal

of Combinatorics 31, 4 (2010), 1121–1135.

[18] Ileana Streinu and Audrey Lee. 2008. Pebble game algorithms and (k, l)-sparse graphs. Discrete Mathematics & Theo-

retical Computer Science 308, 8 (2008), 1425–1437. DOI:https://doi.org/10.1016/j.disc.2007.07.104

[19] T. Sun, Y. Wang, D. Li, Z. Gu, and J. Xu. 2018. WCS: Weighted component stitching for sparse network localization.

IEEE/ACM Transactions on Networking 26, 5 (2018), 2242–2253.

[20] Robert Tarjan. 1971. Depth-first search and linear graph algorithms. In Proceedings of the 12th Annual Symposium on

Switching and Automata Theory (swat 1971). 114–121. DOI:https://doi.org/10.1109/SWAT.1971.10

[21] Y. Wang, T. Sun, G. Rao, and D. Li. 2018. Formation tracking in sparse airborne networks. IEEE Journal on Selected

Areas in Communications 36, 9 (2018), 2000–2014.

[22] Hejun Wu, Ao Ding, Weiwei Liu, Lvzhou Li, and Zheng Yang. 2017. Triangle extension: Efficient localizability de-

tection in wireless sensor networks. IEEE Transactions on Wireless Communications 16, 11 (Nov. 2017), 7419–7431.

DOI:https://doi.org/10.1109/TWC.2017.2748563

[23] Zheng Yang and Yunhao Liu. 2010. Understanding node localizability of wireless Ad-hoc networks. In Proceedings of

the 2010 IEEE INFOCOM. 1–9. DOI:https://doi.org/10.1109/INFCOM.2010.5462060

[24] Z. Yang, Y. Liu, and X.-Y. Li. 2009. Beyond trilateration: On the localizability of wireless ad-hoc networks. In Proceedings

of the IEEE INFOCOM 2009. 2392–2400. DOI:https://doi.org/10.1109/INFCOM.2009.5062166

[25] H. Zhao, J. Wei, S. Huang, L. Zhou, and Q. Tang. 2019. Regular topology formation based on artificial forces for

distributed mobile robotic networks. IEEE Transactions on Mobile Computing 18, 10 (2019), 2415–2429.

Received 12 September 2022; revised 30 March 2023; accepted 13 April 2023

ACM Transactions on Sensor Networks, Vol. 19, No. 4, Article 86. Publication date: June 2023.

https://doi.org/10.1007/BF01534980
https://doi.org/10.1145/1031495.1031502
https://doi.org/10.1109/ICCCN49398.2020.9209620
https://doi.org/10.1145/3547143
https://doi.org/10.1007/978-3-319-03089-0_23
https://doi.org/10.1016/j.disc.2007.07.104
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/TWC.2017.2748563
https://doi.org/10.1109/INFCOM.2010.5462060
https://doi.org/10.1109/INFCOM.2009.5062166

