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An e!cient way to overcome the calibration challenge and RSS dynamics in radio-map-based indoor localization is to
collect radio signal strength (RSS) along indoor paths and conduct localization by sequence matching. But such sequence-based
indoor localization su"ers problems including indoor path combinational explosion, random RSS miss-of-detection during
user movement, and user moving speed disparity in online and o#ine phases. To address these problems, this paper proposes
an undirected graph model, calledWarpMap to e!ciently calibrate and store the sequence-type radio-map. It reduces RSS
sequence signature storage complexity from O (2N ) to O (N ) where N is the number of path crosses. An e!cient on-line
candidate path extraction algorithm is developed in it to $nd a set of the most possible candidate paths for matching with
the on-line collected RSS sequence. Then, to determine the user’s exact location, a sub-sequence dynamic time warping
(SDTW) algorithm is proposed, which matches the online collected RSS sequence with the sequential RSS signatures of the
candidate paths. We show the SDTW algorithm is highly e!cient and adaptive, which localizes user without backtracking of
warping path. Extensive experiments in o!ce environments veri$ed the e!ciency and accuracy of WarpMap, which can be
calibrated within thirty minutes by one person for 1100m2 area and provides overall nearly 20% accuracy improvements than
the state-of-the-art of radio-map method.
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1 INTRODUCTION
Radio-map based indoor locating, which characterizes each location-of-interest by the radio signal strength (RSS)
signature at that location, has attracted great attentions [2][5][38][12]. Compared with other locating techniques,
it provides key advantages including: 1) purely software-implementable on mobile phones without requiring
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additional hardware infrastructure; 2) privacy protection for working in navigation mode; and 3) reasonable
accuracy with errors around 2 - 3 meters .
Despite of the advantages, several practical issues must be considered for practical applications: 1) it is very

laborious to calibrate a $ne-grained radio-map, especially for large application areas; 2) the point-type matching
at discrete locations is sensitive to random online RSS noises and environment dynamics. To overcome these
problems, previous works have devoted deliberated e"orts to exploit di"erent kinds of information to reduce
radio-map calibration cost and to improve the positioning accuracy and robustness.
A major approach to reduce calibration cost is to exploit environment signature [31], including magnetic

%uctuation, illumination intensity at speci$c spots as internal landmarks [29], and used dead reckoning by mobile
phones [6] to track the inertial landmarks to conduct locating, so as to avoid the manually radio-map calibration.
Another major approach exploited automatic labeling [35], which leveraged dead reckoning by motion sensors to
construct a radio-map $rstly in the radio space, then stretch and associate the radio-space geometry to physical
space by geometrical matching using the path information from the %oor-plan. Other approaches also exploited
Expectation-Maximisation (EM) and Manifold methods to learn radio-map parameters by training parametric
radio-map models [22][36]. These methods, however, generally require additional sensors or depend heavily on
the accuracy of dead reckoning, which is known inaccurate by using commodity mobile phones [6][21]. The
inaccuracy of radio-map model may also degrade the performance of locating.
Compared with these approaches, a more straightforward way to tailor RSS noises and to reduce calibration

cost is to collect RSS sequence along indoor paths to build sequence-type radio-map. This sequence-matching
idea was $rstly exploited in [26], which proposed geomagnetic sequence collected on a path as the path’s digital
signature. They showed that sequence matching outperformed point matching in both accuracy and reliability.
However, as stated in the paper, scalability is a key challenge for sequence-based localization, and the paper
considered only a small number of paths. When indoor navigation on all paths is considered, the number of indoor
paths grow exponentially with the number of path crosses, i.e., in the order of O (2N ) where N is the number of
path crosses (See Section II). This requires e!cient model for calibrating and storing the sequential signatures for
all paths. Secondly, the moving speeds and moving patterns of users in o#ine sequence collection phase and
online navigation phase are generally di"erent, leading to sequence misalignment during matching. Adaptive
and e!cient sequence matching algorithm to tolerate the moving pattern di"erences is required. Thirdly, WiFi
RSS is widely available and more descriptive signature for characterizing the indoor paths. How to exploit RSS
sequence signature for scalable and accurate indoor localization remains a promising and challenging problem.

This paper proposes to model the RSS sequence signatures of indoor path by an undirected trace-graph. Each
vertex in the graph models the RSS sequence of a path segment, and the edges model the spatial adjacency of the
vertexes. This trace-graph can be trained by a user traversing the indoor paths once and overcomes the path
combinatorial explosion problem. The sequential RSS signatures of a map with at mostO (2N ) paths can be stored
by a graph ofO (N ) nodes. Based on the trace-graph, an e!cient candidate path extraction algorithm is proposed,
which extractsO (1) number of candidate paths based on the on-line collected RSS sequence. Finally, to determine
the exact location of the user, a subsequence dynamic time warping (SDTW) algorithm is proposed to conduct
on-line localization. The SDTW algorithm can adaptively localize the user to an end point of a path segment in
the candidate path set, without the need of traditional DTW’s backtracking. Further, the random RSS missing
problem is addressed by collaborative !lter (CF), to smooth the measured RSS values, and to $ll the missing RSS
values.More speci$cally, our contributions include:

(1) A WarpMap model represented by undirected graph G= (V,E), where V represents RSS signatures on
path segments and E represents adjacency of path segments.

(2) A fast calibration process to build G by the user traversing indoor routes for once, and Collaborative
Filter method to smooth the noisy RSS data.
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Fig. 1. Comparison between point-type radio-map and sequence-type radio-map.

(3) In online phase, a potential path extraction algorithm to extract from G the potential paths that the target
maybe undergoing, based on the real-time detected access points (APs), which is called candidate sequence
set (CSS).

(4) A subsequence dynamic time warping (SDTW) algorithm to $nd a subsequence in CSS which has the least
warping distance to the online measured RSS sequence within a short time window.

(5) Investigations of di"erent warping distance functions and di"erent CSS selection methods including
Principle Component Analysis (PCA) etc.

(6) System implementation and extensive experiments in di"erent environments using di"erent brands of
cell phones, which veri$ed the e!ciency and accuracy improvement than the state-of-the-art (point-type
radio-map + K-nearest neighbor/particle $lter) locating method.

The rest of this paper is organized as follows. Background and problem model are introduced in Section 3.
The trace-graph construction is introduced in Section 4. Online locating by SDTW is introduced in Section 5.
Performance evaluation by a prototype system is presented in Section 7. The paper is concluded in Section 8.

2 RELATED WORK
Radio-map based locating is essentially a pattern-matching based approach. The seminal work is RADAR [2],
proposed in 2001, to use radio frequency identi$cation (RFID) signature for indoor locating. After that, various
e"orts have been devoted into this area. The major related works fall into three research categories: 1) reducing
the radio-map calibration e"orts; 2) improving the location accuracy; 3) improve radio-map adaptivity.

2.1 Reduce the radio map calibration e!orts
One key problem in indoor locating is how to reduce the radio-map calibration cost, because it is very laborious
to train the radio-map, especially for the large environment. A major approach to reduce calibration cost is
unsupervised indoor locating method [31], which exploited environment signature. Scholl et al. [24] proposed
fast indoor radio-map building for RSS based indoor locating by using hand-held laser mapping device for
building %oor plan and radio-map simultaneously. Geng et al. [4] proposed hybrid radio-map for indoor locating,
which reduce the radio-map training e"orts by the aid of sparsely deployed ultrasound ranging system. Molina-
GarcÃŋa et al. [17] proposed to enhance in-building $ngerprint by femtocell networks. Tian et al. [29] exploited
illumination intensity at speci$c spots as internal landmarks. Harle et al. [6] used dead reckoning by mobile
phones to track the inertial landmarks to conduct locating, so as to avoid the manually radio-map calibration.
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Another major approach exploited automatic labeling Yang et al. [35] leveraged dead reckoning by motion sensors
to construct a radio-map $rstly in the radio space, then stretch and associate the radio-space geometry to physical
space by geometrical matching using the path information from the %oor-plan. Other approaches also exploited
Expectation-Maximisation (EM) and Manifold methods to learn radio-map parameters by training parametric
radio-map models [22][36].

2.2 Improve the locating accuracy
From RADAR [2], a series of works focused on improving the locating accuracy. Some approaches used enhanced
online locating algorithms to tolerate random RSS noises in the locating process. Haque et.al. [5] proposed
LEMON, which enhances K-nearest neighbor (KNN) approach be mining the oversampled neighborhoods. Wu
et.al. [32] exploited Support Vector Machine (SVM) in radio-map. Horus [38] proposed a probabilistic radio-map
model, in which the probability density of the RSS signatures are collected and stored as radio map. Compass [12]
is also an probabilistic radio-map model, which also leverages the object orientation to improve location accuracy.
Other major approaches used information fusion techniques, which exploited the motion continuity information,
%oor map information to design Bayesian $lter [5], particle $lter [8], and Markov Random Field models [33] to
narrow down the search space to improve the locating accuracy against noises. Zampella et al. [39] proposed the
use of a particle $lter to fuse foot mounted inertial measurements with radio-map. A recent work by Herrera et
al. [1] proposed the fusion of radio-map and IndoorOSM %oor plan for accurate indoor locating. Geng et al. [4]
proposed hybrid radio-map method to reduce calibration cost and to improve location accuracy. Shu et al. [26]
$rst applied sequence-matching idea in radio-map to improve locating accuracy. But scalability is a key challenge
for sequence-based localization. A comparative study of radio-map based location accuracy performance can be
referred to [9].

2.3 Improve the radio map adaptivity
Even if the radio-map was o#ine calibrated, it maybe outdated due to the environment change. How to design
adaptive radio-map to tolerate the environment impacts is an important problem. Ji et al. [10] investigated the
impact of building environment on the performance of dynamic indoor location. Ni et al. [19] proposed to use
landmark RFIDs to measure RSS signatures online to make the radio-map be adaptive to environments. Yin et al.
[36, 37] proposed adaptive temporal radio-map model by learning algorithms. Pan et al. [22] proposed adaptive
localization in dynamic environment using multi-view learning. Lo et al. [15] proposed adaptive radio maps for
pattern-matching based localization via inter-beacon co-calibration. Yang et al. [34] proposed AdaMap, which use
linear regression model to represent the radio-map and online adapts the model coe!cients by online learning.
However, note all existing work mainly use point-type radio-map to represent the RSS signatures of speci$c

locations. The spatial dependency among the RSS signatures are rarely utilized. In this paper, we explore the
trace-type $ngerprint to further improve the locating accuracy and robustness.

3 BACKGROUND AND PROBLEM MODEL
3.1 Point-type radio-map
In traditional point-type radio-map, let L = {l1, l2, · · · , lK } denoteK points of interest. The RSS signatures of these
points are o#ine trained and stored as Mp = {y1, y2, · · · , yK }, where yi is the captured RSS vector at location li ;
In online locating, the online collected RSS signature is xt at time t . Point-type matching is to $nd a location
whose RSS signature in Mp matches best with xt .

l∗i = argmin
(i ):yi ∈Mp

Dist (xt, yi ) . (1)
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where Dist(xt , yi ) measures the similarity between xt and yi . Fig. 1(a)(b) illustrate the locating process of point-
matching, which is indeed carried out by matching of RSS vectors. For clarity, the notations used in this paper
are listed in Table 1.

3.2 Sequence-type radio-map
In sequence-type radio-map, the RSS signatures along indoor paths are o#ine calibrated. Let Γ = {Γ1, · · · , ΓK } be
the set of calibrated paths;Mq = {Y1, · · · ,YK } are the captured RSS sequences for these paths. The row length
for Ys (i.e, signatures for path Γs ) is the number of detectable APs on the path, and its column lengthms is the
number of sample points on path Γs . In online locating, a target measures RSS sequences within a moving time
window {t−w+1, · · · , t }. This forms a online measured RSS matrix X = (Xt−w+1, · · · ,Xt ), whose column length
isw , and t is the current time. Sequence matching is to $nd the best match between X and a subsequence Ys∗[a∗,b∗]:

(s∗,a∗,b∗) = argmin
(s,a,b ):Ys ∈Mq,1≤a≤b≤ms

Dist
(
X,Ys[a,b]

)
. (2)

where Ys[a,b] is a subsequence of Y
s ∈ Mq. a and b are the start point and the end point of the subsequence.

X is matched to a subsequence of Ys because the online moving window is generally shorter than the o#ine
trained sequence. The real-time location of the target is given by Γs

∗
b∗ , which is the end point of the best matched

sub-path. Fig. 1(c)(d) illustrate the locating principle of localization by sequence radio-map. It can be seen that

Table 1. List of notations and explanation

Notations Explanation
Γs a calibrated path i
Γsb the bth sample point of Γs
Ys the RSS sequence collected on path Γi

Ysi the ith sample point in sequence Ys
Ys[a,b] subsequence of Ys from Ysa to Ysb
Ysi, j the RSS value of jth AP of ith sample point in Ys

X RSS sequence in collected online moving window
Xt the t th sample point in X
ms length of RSS matrix Ys
w length of moving window
Bx the e!cient AP union set in the moving window
Bs the e!cient AP union set of Ys
G the trace-graph
V the vertex set in G
E the edge set in G
Bi the e!cient AP union set of vertex i
N the number of path crosses in G
NV the size of V
NE the size of E
M the size of candidate vertex set (CSV) extracted from V
P candidate sequence set (CSS) generated based on CVS
L the size of CSS
p the size of extracted principal components from Bx ∩ Bs
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Fig. 3. Combinational explosion of sequence-type radio-map.

sequence matching is essentially to $nd the best match for the RSS matrix X. But note that the detectable APs in
di"erent locations maybe di"erent, therefore, online locating needs to $rstly search candidates paths by the list
of detectable APs, and then to determine the target location by sequence matching. These will be detailed in
Section 5.
It can be understood intuitively that sequence-type radio-map implicitly embeds the motion continuity and

the path information into the radio-map, which is promising to provide better location accuracy and robustness.
But key challenges prevent the wide adoption of sequence type radio-map.

(1) Combinational explosion of indoor paths causes the sequence-type radio-map hard to enumerate and
calibrate, which is illustrated in Fig. 3. The red line shows a combined path extracted from sequence-type
radio-map. We prove in Section 4 that the number of combinatorial paths extracted from a indoor map G
is in the order of O (2N ), where N is the number of crossing points.

(2) RSS miss-of-detection and RSS noises are remarkable during user movement, leading highly “dirty"
radio-map by mobile calibration. One example is shown in Fig. 4. Fig. 4(a) shows the point-type radio-map
captured for a room. Fig. 4(b) shows the sequence-type radio-map captured by a user walking recursively
in the room. Compared with the point-type radio-map, RSS values are randomly miss-of-detection and
are highly noisy in the sequence-type radio-map.

(3) The users’ moving speeds, moving directions may be di"erent in training phase and online phase, causing
RSS sequences hard to be aligned in sequence matching.

3.3 Working Flow of Warp-map
We propose WarpMap to address these di!culty, which includes e!cient model and algorithms to address these
di!culties. The working %ow of WarpMap is shown in Fig. 2. It contains an o#ine phase and an online phase.

• In o#ine phase, the RSS signatures along a set of indoor paths are calibrated to construct a sequence-type
radio-map. The RSS sequence is $rstly smoothed by an proposed collaborative $lter for noise removing
and empty item $lling. Then a trace-graph model is proposed to store the RSS signatures of the paths.
• In online phase, RSS signatures are collected into a moving window when a user is walking along indoor
paths. A candidate sequence set (CSS) is extracted from the stored radio-map based on AP-list matching,
which reduces the searching space of sequence matching. Finally, the location of the user is calculated by
a proposed subsequence dynamic warping algorithm.

We assume the indoor map can be obtained in advance, e.g. by Google Map [16] or Baidu Map [3], which is
increasingly available for public spots, such as shopping mall. The storage complexity in o#ine phase and the
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computation complexity in online matching are key problems for scalability, while the location accuracy and
robustness are improved by subsequence dynamic time warping.

4 TRAINING: TRACE-GRAPH
An undirected graph model, i.e., trace-graph is proposed for calibrating sequence-type radio-map using little
human e"orts, while avoiding the path combinatorial explosion problem. We $rstly introduce the main idea of
trace-graph construction.

4.1 Trace-Graph Construction
For the innumerable indoor path combinations, the idea of sequence radio-map calibration is $rstly to divide
the indoor paths into path segments, i.e., segments of path between crossing points. Each path segment will be
treated as a vertex in the trace-graph model. The RSS signatures of each path segment are calibrated to form
vertex of the trace-graph. The advantages of trace-graph includes:

• The RSS sequences of any desired path can be generated from the trace-graph, even if the path is not
calibrated.
• Trace-graph e!ciently reduces the storage space, which does not repeatedly store the RSS signature of
the same path segment.

More speci$cally, the trace-graph is constructed by the following three steps.
(1) RSS sequence collection is carried out by a user walking along indoor paths while taking a mobile phone

running a calibration APP. The user clicks the start point and the end point for each direct path, and the
calibration APP records and interprets the RSS signatures of this path. Section 6.1 gives the details of RSS
sequence collection.

(2) Then the cross points of these paths are found according to the map in the APP. These crossing points
divide the collected RSS sequences into a set of path segments.

(3) Suppose there are N crossing points. We treat each path segment as a vertex, denoted by Vi , then an
undirected trace-graph is generated as G = (V,E) where V = {Vi , i = 1, 2, · · · ,NV } is the segment set;
E = {Ei, j } represents the connections of these segments. Ei, j = 1 if segment Vi and Vj share a common
crossing point. Let NV and NE denote the number of vertexes and edges. The graph is stored as sequence
radio-map.

An example of trace-graph construction is shown in Fig. 3. Fig. 3(a) shows four direct paths with four cross
points. The cross points divide the paths into 12 path segments. The RSS signatures of these path segments can
be calibrated easily by a user just walking along the four directed path once. However, these path segments can
combinatorially form a large set of possible indoor paths. Fig. 3(b) shows the formed trace-graph, which is an
undirected graph. Each vertex is a path segment, and each edge indicates the adjacency of two path segments. The
RSS signature of any uncalibrated path can be generated from this trace-graph. For example, the RSS signatures
of path Γ5, which is an uncalibrated path can be generated as Y5 by connecting four calibrated path segments.
Mathematically, the trace-graph in Fig. 3(b) can be modeled by an adjacency matrix A. Then the number of

length-n paths between node i and j in the graph can be calculated by the (i, j ) entry of the nth power of A, i.e.,
An
i, j . So the total number of length-n paths in the graph can be calculated by:

P (n) =
N∑

i=1

N∑

j=i+1
An
i, j (3)

In this particular example, it can be calculated that the number of paths containing {1, 2, 3, 4, 5} path segments
are {12, 24, 84, 413, 1764} respectively.
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Fig. 4. Comparison between point-type radio-map, sequence-type radio-map and sequence-type radio-map filtered by CF.

Theorem 4.1 (Storage Scalability). The trace-graph is e!cient to store. Suppose there are N cross points
in the indoor paths, then NV (the number of vertexes) of the trace-graph is in the order of O (N ); and NE (the
number of edges) is also O (N ) in G.

Proof. In indoor paths, the cross points have low degrees, which are generally less than 4. Let a constantC be
the maximum degree of a cross point, then the number of vertexes is at most NV = CN = O (N ). Each cross point
will generate at most C (C − 1)/2 edges, so NE ≤ C (C − 1)/2 · N = O (N ).

!

Theorem 4.2 (Number of Combined Paths). The number of combined paths extracted from G is at most
O (2N ), where N is the number of crossing points.

Proof. The number of length-n paths in a complete graph is in the order ofO
(

NV !
(NV −n)!

)
whereNV is the number

of vertexes and n is the path length. So the number of combined paths is O
(∑NV

n=1
NV !

(NV −n)!
)
= O (2NV ) = O (2N ).

!

Note that the trace-graph radio-map model is also suitable when there is an open area without clear path. The
RSS signatures can be calibrated just by walking in directed paths to calibrate a trace graph like that shown in
Fig. 3(b).
In online locating, the moving window of online collected RSS sequence is actually short (the RSS sequence

collected in the past one minute can be used as the online RSS sequential signature), so only a limited number of
short paths need to be generated from the trace-graph for online sequence matching. Using AP list, we can also
narrows down the searching space of graph vertexes. These avoid the complexity to generate many long paths in
online phase, which is also a key for scalability in sequence-based radio-map. This problem will be detailed in
Section IV.B.

4.2 RSS Sequence Cleaning
Although RSS sequence collection by walking along indoor paths can collect the RSS sequences quickly, the
collected RSS values are highly noisy and are frequently missed during detection. So another key problem in
constructing the trace-graph is to clean the collected RSS sequence.

As the detectable AP-list at di"erent locations is di"erent due to the limited coverage range of the APs and the
random miss-of-detection of RSS values, the row length of RSS sequence Ys should be regularized to be the same.
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At $rst, we remove the fake APs by $ltering their SSID and MAC addresses, e.g. some mobile hotspots are easily
identi$ed by their SSIDs. Then let Bs indicate the union set of e"ective APs detected on Γs , we regularize the row
length of Ys to the size of Bs .

Algorithm 1 Collaborative $lter
Require: Ys : raw RSS matrix on path Γs

Ensure: Ys : cleaned RSS matrix on path Γs

for round = 1: T do
Update polynomial model of each row;
for each empty value Ysi, j do
Ŷsi, j,1 ← poly-$t by row i;
Ŷsi, j,2 ← w eighted interpolation by column j;
if |Ŷsi, j,1 − Ŷsi, j,2 | < Threshold then
Ysi, j = (Ŷsi, j,1 + Ŷ

s
i, j,2)/2

end if
end for

end for

Algorithm 2Weighted interpolation based on the APs similarity
Require: Ys : raw RSS matrix on path Γs , i: the row index of empty RSS value, j: the column index of empty RSS
value, hs : row length of Ys

Ensure: Ŷsi, j,2: one estimated value for Ysi, j
for k = 1 : hs and k ! i do
S (Ysi ,Y

s
k ) = (Ysi · Ysk )/(‖Ysi ‖ ∗ ‖Ysk ‖)

end for
Select top-K most similar rows of Ysi . Let K denotes the set of their row indexes.
Ŷsi, j,2 = (

∑
k ∈K S (Ysi ,Y

s
k ) ∗ Ysk, j )/(

∑
k ∈K S (Ysi ,Y

s
k ))

Regularized Ys then need to be cleaned. There are many traditional data clean methods to $ll the missing data
in Ys , e.g., polynomial $tting [30], discrete fourier transform [7] and discrete wavelet transform [25]. However,
there are practical challenges to apply these methods: 1) In some rows of Ys , only a small number of RSS values
can be detected. 2) RSS values in the two ends of some rows are usually missed.

So collaborative !lter (CF) [28] is exploited which takes time and APs correlation factors into account to $lter
the RSS sequence data. The routine of CF is given in Algorithm 1. For a missing value, one prediction value is
calculated in row by polynomial $tting. Polynomial $tting can $lter the noisy RSS data for user’s movement on
irregular paths. The path segments in o#ine training phase are generally direct path segments which can be
designed by the trainer. So quadratic function is generally good enough for $tting the RSS signatures of a path
segment without using higher degree functions. Usually when RSS sampling rate is higher than 0.5 Hz, CF works
well. The second step in RSS data $lling is to $ll data in column by a weighted interpolation based on the APs’
RSS sequence similarity, which is brie%y introduced in Algorithm 2. If the two predicted values in column and
row have di"erence smaller than a threshold, the average value of these two predictions will be $lled into the
empty value. This process repeats a $xed number of times. One example of CF results is shown in Fig. 4(c). We
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can see CF $ll as many empty values as possible reasonably. In Section. VII-C, we investigate the e"ectiveness of
di"erent data clean methods. It can be proved that RSS sequence clearning can improve the locating accuracy
and CF provides e"ective data cleaning.

5 ONLINE LOCATING
After trace-graph construction, the online locating is carried out by three steps: 1) online RSS sequence collection
in a moving window; 2) candidate RSS sequence extraction from the trace-graph; 3) subsequence dynamic time
warping for location determination.

5.1 Online RSS Sequence Collection using a Moving Window
As the target is moving, we capture RSS periodically and stores the measured RSS vectors into a moving window.
Let X = (Xt−w+1, · · · ,Xt ) denote the RSS sequence collected in the moving window andw be the window size.
Xt is the latest collected RSS sample. Let Bx be the set of AP list in the moving window.The row length of X
should be regularized to the length of |Bx | and CF is then applied to $lter the online RSS matrix.

5.2 Candidate RSS sequence extraction from the trace-graph
5.2.1 Candidate Vertex Set Extraction. The $rst step is to extract all vertices who has similar AP list with X.

The preselection of vertices can greatly reduce the scale of CSS.
For every vertex inG, let Bi denote the AP list of the vertex i , Jaccard similarity score [13] is calculated between

Bi and Bx :

J (Bi ,Bx ) =
|Bi ∩ Bx |
|Bx | (4)

Vertex i is added to the candidate vertex set (CVS) if J (Bi ,Bx ) > Threshold, which means the AP list in Bi cover
most of the APs in Bx . In implementation, we set the Threshold to 0.7.

5.2.2 Candidate Sequence Set Generation. The CVS set selects a small subset of vertexes from trace-graph
for reducing online matching complexity. Since the vertexes with similar AP list are generally neighboring to
each other, the vertexes in CVS set are in a subgraph of the trace-graph. Then, the candidate sequence set (CSS) is
generated based on the vertexes in CVS, which online builds the possible paths that the target may be moving on.

Since the moving window is short, it is unnecessary to generate long candidate paths. This heuristic can limit
the size of CSS set. In implementation, we generate possible sequences containing at most c vertices, where c = 3
or 4. A direct way for CSS generation is to let each vertex in CVS to conduct Breadth-First-Search c steps to $nd
paths originated at that vertex with length at most c , and then merge the repeated paths returned by di"erent
CVS. The remained distinct paths will form the CSS for online locating. Fig. 5 illustrates the process of CVS
extraction and CSS extraction. We denote the returned CSS by {Ys : s = 1, · · · ,L}, where L is the number of
candidate sequences.

Theorem 5.1 (Computational Complexity). The time complexity of Algorithm 3 to generate candidate
sequence set is at most O (Mc ), whereM is the size of CVS and c is a small user-de$ned constant.

Proof. Let Pk denote all combined paths of length k extracted from CVS. We always have |Pk | ≤ Mk

throughout the algorithm. Note that it takes O (1) time to add a new path to the database since c is a constant.
Therefore the time used by Algorithm 3 is at most O (

∑c−1
k=1M

k ·M ) = O
(
M2 (Mc−1−1)

M−1

)
= O (Mc ).

!
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Fig. 5. The working flow of online matching. A"er RSS sequence is online collected into a moving window, the trace-graph is
searched by the AP-list of the collected RSS. The trace-graph vertexes with similar AP list will be added into a CVS set. Then
the CSS is generated from the CVS set. A"er that, for each candidate path in CSS, SDTW is applied to find the subsequence
matched with the online collected RSS sequence in the moving window. The subsequence with the minimum warping
distance will be calculated as the matched path (in the figure, the matched subsequences are in green, with warping distance
0.6 and 2 respectively, so the subsequence in CSS1 is the matched path), and the end point of the subsequence is the current
location of the target (the dark point).

Algorithm 3 CSS generation
Require: G = (V,E), c , CVS set
Ensure: CSS containing at most c Vertices
for each vertex Vi in CVS do
Breadth-First-Search c steps to $nd paths originated at vertex Vi with length no larger than c .

end for
Merge the returned paths of di"erent CVS and delete the repeated paths.
Return the RSS sequences on the remained distinct paths.

Theorem 5.2 (Matching Scalability). The number of generated candidate paths, i.e., |P |, is at most O (Mc ),
whereM is the size of CVS.

Proof. Since |Pk | ≤ Mk , the number of generated candidate path set is at most∑c
k=1M

k =
M (Mc−1)

M−1 = O (Mc ).
!

Theorem 5.2 indicates the scalability of online locating by sequence matching. The online collected RSS
sequence needs only to be compared with a limited number of RSS sequences generated in the CSS set.

5.3 Subsequence Dynamic Time Warping
Recall X is the online collected RSS sequence in a moving window; {Ys : s = 1, · · · ,L} is the candidate RSS
sequence for comparison. Since X is short, the goal of matching is to $nd a particular sequence Ys∗ in CSS, whose
subsequence Ys∗[a∗,b∗] satis$es the objective equation (2). The end point of the subsequence Γs∗b∗ is the location of
the target. This is carried out by a proposed subsequence dynamic time warping (SDTW) algorithm.
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5.3.1 Dynamic Time Warping (DTW). SDTW is an extension of dynamic time warping (DTW) [18][23], an
algorithm for measuring similarity between two temporal sequences which may vary in time or speed. Consider
two sequences X = (x1, · · · ,xn ) and Y = (y1, · · · ,ym ). DTW calculates a warping path P = (p1, · · · ,pl ) where
pk = (ik , jk ); ik ∈ [1 : n]; jk ∈ [1 :m]; and k ∈ [1 : l] that satis$es the following alignment conditions:

{
p1 = (1, 1),pl = (n,m)
pk+1 − pk ∈ {(0, 1), (1, 0), (1, 1)},∀k ∈ [1 : l − 1] (5)

The $rst condition enforces the $rst elements of X and Y as well as the last elements of X and Y are aligned to
each other. The second condition re%ects no elements in X and Y can be omitted and there are no replications in
alignment. An alignment satis$es above conditions is called a warping path.

The warping distance between X and Y is de$ned as the summation of local distances along the warping path.

DTW(X ,Y ) =
l∑

k=1
d (xik ,yjk ). (6)

The optimal warping path, i.e., P∗ that minimizes DTW(X ,Y ) can be calculated by dynamic programming[14].

5.3.2 Subsequence Dynamic Time Warping (SDTW). SDTW relaxes the boundary condition in (5). It allows X
match a subsequence Y[a,b] = (ya ,ya+1, · · · ,yb ) (1 ≤ a ≤ b ≤ m) of Y [14], such that

(a∗,b∗) = argmin
(a,b ):1≤a≤b≤m

DTW(X ,Y[a,b]). (7)

But the locating problem has some di"erences from the traditional SDTW.
(1) It needs only to determine the end point of the matched subsequence, i.e., b∗ without the need to determine

the start point a∗. This feature is utilized to design an e!cient subsequence matching algorithm which doesn’t
need the cost of back-trace by dynamic programming, as detailed in Algorithm 4.
(2) It needs to search over multiple candidate sequences {Ys : s = 1, · · · ,L} to $nd the subsequence with the

overall minimum warping distance.
(3) We need to consider the situation that the user may walk in the reversed direction of the training direction

of the candidate sequences. So matching is also conducted reversely, as detailed in Algorithm 3.

5.3.3 SDTW for sequence-based locating. The sequence-based locating method based on SDTW is summarized
in Algorithm 4. Reducing the height of X and Ys by Principal component analysis (PCA) [11] is the $rst step
to reduce computation complexity of sequence matching. Then the optimal warping distance D (n,b∗s ) and the
ending point are calculated by (10) between X and each Ys . We also need to reverse the direction of X and
recalculate the optimal warping distance. Finally, the target location is determined as the end point in the matched
subsequence having the least warping distance.
Note that since the ending point and the optimal warping distance D (n,b∗s ) have already been provided by

(10), it is not necessary to calculate a∗s by back-tracing. This saves the cost of dynamic programming than the
traditional SDTW [14].

Fig. 6 further illustrates the warping distance matrix. The values represented by “+" is given as the boundary
values. They produce the other entries of distance matrix by (9). After getting the matrix, the entry with the
smallest distance in the nth row can be found, i.e., the star. Its column index is b∗s , and its value is D (n,b∗s ). In
locating problem, we don’t need to back-trace to $nd a∗s , and the warping path (represented by the dashed line),
although they have already been determined by the distance matrix. This saves computation cost than traditional
SDTW [14]. It is easy to verify that the computation cost is O (mn) in this step. The overall computation cost is
O (Lmn), which is e!cient.
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Algorithm 4 SDTW for sequence-based locating
Require: X: online RSS sequence, {Ys ,s=1, · · ·,L}: CSS
Ensure: s∗: the location of target

STEP1: AP Set Reduction
· Extract principal components from AP union set of X and Ys by PCA and replace X and Ys by the extracted

represented sequences.

STEP2: SDTW between X and {Ys ,s=1, · · ·,L}
· Set the boundary conditions of warping distance matrix:

Ds (i, 1) =
i∑

k=1
d (Xk ,Ys1 ), i ∈ [1 : n]

Ds (1, j ) = d (X1,Ysj ), j ∈ [1 :ms ]
(8)

· Then the warping distance matrix is produced as:

Ds (i, j ) = min{Ds (i−1, j−1),Ds (i, j−1),Ds (i−1, j )}+d (xi ,yj,s ) (9)
· The matched end point between X and Ys is determined by Ds :

b∗s = argmin
bs ∈[1:ms ]

Ds (n,bs ), (10)

· The optimal warping distance with Ys is given by:
D (X,Ys ) = D (n,b∗s ) (11)

STEP3: Reverse sequence X to match with {Ys ,s=1, · · ·,L}
· Reverse the direction of Xt and recalculate (8) - (11) to obtain

←
b∗s and

←
D

(
n,
←
b∗s

)
for s=1, · · ·,L.

STEP4: Determine the target location and the minimum warping distance
· For all the candidate sequences, the overall best matched sequence is the one with the overall least warping distance:

s∗ = argmin
s ∈[1:L]

min
{
D (n,b∗s ),

←
D

(
n,
←
b∗s

)}
(12)

· The location of the target is determined as the end matching point in the matched subsequence that has the overall
least warping distance.

5.3.4 Using Di!erent Distance Functions. We also investigate the impacts of using di"erent distance functions,
i.e., d (xik ,yjk ) to check their impacts to the locating accuracy. Four di"erent functions were investigated.

1) Euclidean distance: dxy =
√∑n

k=1 (xk − yk )2
2) Cityblock distance: dxy =

∑n
k=1 |xk − yk |

3) Chebyshev distance: dxy = maxk |xk − yk |
4) Cosine distance: dxy = dot (x,y )

‖x ‖∗‖y ‖
In Section. 7.4, we will concretely analyze the e"ect of basic warping distance functions on locating accuracy

for SDTW.

5.3.5 AP Set Reduction in SDTW. As SDTW distance calculation between X or Ys needs high computation
complexity when the RSS sequence has high dimension in the number of APs. So reducing the height of X or Ys
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Fig. 6. Illustration of the warping distance matrix in SDTW.

is also important for e!ciency of sequence matching. We investigate PCA reduce the dimension of RSS sequence
for matching e!ciency.

Principal component analysis (PCA) [11] is an e!cient method to extract a set of linearly uncorrelated variables
from a set of correlated variables. Such uncorrelated variables represent main properties of original variable set.
We use PCA to extract principal components from AP union set of X and Ys and use extracted corresponding RSS
sequences for SDTW distance calculation. Let |Bx ∪Bs | denote the size of AP union of X and Ys and p denote the
size of extract principal components. We know 1 ≤ p ≤ |Bx ∪ Bs |. The height of X and Ys should be regularized
to p for subsequent SDTW distance calculation. In Section. VII-E, we investigate the e"ect of principal component
size p on locating accuracy. It can be proved that reducing the height of X and Ys can meet the requirements of
high computational e!ciency and high locating accuracy.

6 IMPLEMENTATION
We have developed an APP on Android platform to implement sequence-based indoor localization. The android
APP carries out path calibration, RSS path collection, and data transmission to server and real-time position
display. The location determination is carried out by a location server. The server constructs the trace-graph
generation, CSS extraction based on real-time detected AP list, and SDTW-based online locating.

6.1 RSS sequence collection
RSS sequence collection can be carried out in many ways using interactive smart phones or indoor navigation
systems by inertial sensors [20]. We use an interactive way by an APP developed on the mobile phone. The APP
renders the %oor-plan and gets the scaling factor of the %oor-plan, so that each pixel on the screen maps to a
physical location.In order to calibrate a path, a user clicks on the map to $rstly mark the path. Several clicks on
the screen will characterize a path. Then the user walks along the speci$ed path to collect RSS sequence. The
WiFi-scanner calls the RSS sampling library of Android to take RSS samples in approximately equal intervals,
so the positions where RSS signal is measured on the path can be calculated by assuming the user is moving at
constant speed.
But in practice, we found that RSS sampling rate of di"erent phones di"er greatly, which can be referred to

Table. 2. The di"erence is mainly due to the power optimization policy of the phone. The locating performance of
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Fig. 7. Snapshots of RSS sequence calibration. Fig. 8. Map of NEC Laboratories China.

SDTW may deteriorate greatly when phones collect the RSS sequences in di"erent frequency during the o"-line
training and on-line locating process. For example, the Sumsang phones can collect RSS values in 38.03 Hz, while
Meizu phones only collect RSS values in 0.52 Hz. There are duplicate values in the highly frequent RSS scans. So
in practice, we regularize phones RSS sampling rate to 0.5 Hz in order to improve SDTW’s robustness in di"erent
phones and to remove the duplicated RSS scans for energy e!ciency. In case the RSS values are missed in a
scan, the CF can e"ectively clean and $ll the missed data. A RSS sequence on a path will be a series of <location,
RSS vector> pairs, which is a mapping from Γs to Ys . Then these collected RSS sequences are transmitted to the
server to compose the trace-graph. Snapshots of RSS sequence calibration are shown in Fig. 7.

6.2 Online locating
After RSS sequence calibration, an APP is developed for on-line locating, which collects RSS sequence in a
moving window and sends the sequence to a localization server. The server calculates the target position through
SDTW-based sequence matching, and sends the locating result back to the APP for location rendering. The
client-server structure supports multiple user localization. The clients do not interfere with each other. When the
number of users is very large, we may need to investigate the loading balancing problem of the server, which is
not the focus of our paper.

7 PERFORMANCE EVALUATION
7.1 Experiment setup

7.1.1 Experiment area. We conducted experiments at three di"erent locations.
(1) The $rst experiment was conducted in NEC Laboratories China, located in Innovation Plaza No.1 of

Tsinghua Science Park. The o!ce area is about 1100m2 and more than 90 APs can be detected in the area. We did
the experiment for almost one month, including training trace-graph and conducting online locating. The map
and collected RSS sequences are shown in Fig. 8.
(2) The second experiment was in Hang Lung Square, which is a shopping mall located covering 25000m2 in

Liangxi Street, Wuxi, China. The experiments were conducted in summer 2017. The map of the experiment %oor,
i.e. $rst %oor, is available from Baidu Maps, which is shown in Fig.15. We mark training RSS sequences marked
by red lines and testing RSS sequences marked by green lines.
(3) The third experiment location was in Suning Square, which is another shopping mall covering 23000m2

located in Renmin Middle Street, Wuxi, China. Its forth %oor was chosen as experiment %oor whose map is
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Fig. 9. Mean locating error as a function
of moving window sizew .

Fig. 10. CDF of locating error as a func-
tion of data clean methods.

Fig. 11. Mean locating error as a function
of distance functions.

achieved from Baidu Map. Fig. 16 shows collected training RSS sequences in red lines and testing RSS sequences
in green lines. We conducted the experiment in summer 2017.

7.1.2 Experiment phone. 5 phones with di"erent brands are chosen to evaluate SDTW’s robustness to phone
change, i.e. Mi, Sumsang C7, Sumsang C9, Leshi and Meizu. We used Mi to conducted experiment in NEC
Laboratories China and other phones in Hang Lung Square and Suning Square. Their sampling rates are shown
in Table. 2. Sampling rates of other common phone brands are also investigated, e.g. 0.58 Hz for Huawei, 0.52 Hz
for Lenovo. It can be seen that RSS sampling rates of di"erent phone brands di"er greatly. So we regularized RSS
sampling rate to be the same to improve SDTW’s robustness to di"erent phones, which is detailedly discussed in
Section 7.8.

7.1.3 Comparing Algorithms. Two traditional point-type radio-map based locating methods were implemented
for comparison: (1) Point-type radio-map using K-nearest Neighbor, abbreviated as Point-KNN. (2) Point-type
radio-map using K-nearest Neighbor and particle $lter, abbreviated by Point-PF [27]. The Point-PF uses signal
similarity to generateM next-time candidate positions of particles and movement consistency is used to remain
K best particles (or trajectories) fromMK candidate particles. The end point of the best particle is treated as the
estimated location.

7.1.4 Investigated Metrics. Experiments are carried out in two categories:
(1) The locating accuracy. We $rst analyzed four inner factors of SDTW, including the length of moving

window w , di"erent data clean methods, di"erent distance functions, the reduced height p of X and
Ys . Then locating accuracy of SDTW based on the best four factors was compared with two point-type
radio-map methods.

(2) The locating robustness. We evaluated SDTW’s robustness to the changes of environments, phones, dates,
walking speed and walking pattern.

7.2 Accuracy vs. Length of Moving Window
We investigated the moving window length $rst. The results are from the experiments in NEC Labs. The
experiments was conducted by varying the length of moving window from {1, 3, 5, 10, 15, 20}. The average
locating error as a function ofw is plotted in Fig. 9. Whenw = 1, SDTW is degraded to Point-KNN. Compared
with Point-PF, SDTW works worse when w ≤ 5. However, asw increases, SDTW shows better locating accuracy
than both Point-KNN and Point-PF. Whenw ≥ 15, the locating accuracy of SDTW tends to decrease a little bit.
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Fig. 12. Mean locating error as a function
of the height of RSS sequences.

Fig. 13. CDF of locating errors for SDTW,
Point-KNN, Point-PF.

Fig. 14. Mean and median of locating er-
rors for SDTW, Point-KNN, Point-PF.

The reason is whenw is large, sequence matching accuracy decreases at some boundary locations, because it is
hard to form a long sequence. So a window size between 10 and 15 is appropriate.

7.3 Accuracy vs. Data Clean Methods
Then the impact of data clean methods on SDTW was accessed, based on the experiment data of NEC labs. We
compared the $ltering performance of CF with that of polynomial $tting, discrete fourier transform and discrete
wavelet transform, which is introduced in Section. IV-B. Their corresponding locating errors are shown in Fig. 10.
It can be seen CF improves locating accuracy best.

7.4 Accuracy vs. Di!erent Distance Functions
In Section. 5.3.4, we have introduced four di"erent distance functions for d (xik ,yjk ). We separately applied them
in SDTW algorithm and calculated average locating errors. The results are shown in Fig. 11. Euclidean distance
and cityblock distance work better than the other distances. It is reasonable as these two distance functions give
larger values (all four distance functions give positive values) for the same di"erence between two vectors, which
means they distinguish similar vectors better.

7.5 Accuracy vs. PCA Parameter
As discussed in Algorithm 4, PCA is used to extract principal components from AP union set of X and Ys for
online sequence matching. We calculated locating errors by varying the number of principal components p from
1 to 20. The average locating errors are shown in Fig. 12. We $nd SDTW works well when p ≥ 5.

7.6 Accuracy vs. Point-type Radio-map Methods
In the subsection, we $rst set the best inner factors for SDTW and compared its locating accuracy with Point-KNN
and Point-PF. The best factor setting includes (1) choosing the size of moving windoww = 15, (2) using CF for
data clean, (3) using euclidean distance as distance function and (4) setting the height of X and Ys as 10. The
cumulative distribution function (CDF) of locating errors is shown in Fig. 13 and mean and median errors are
plotted in Fig. 14. We can see SDTW reduces the average locating error more than 20% than Point-KNN and
Point-PF. And SDTW’s locating accuracy can be further improved by collaborating with particle $lter.

7.7 Robustness vs. Environments
For locating methods, the robustness to environment changes is a critical indicator for being widely used. So
in the subsection, locating errors of SDTW in di"erent indoor areas, i.e. NEC Laboratories China, Hang Lung
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Fig. 15. Map of Hang Lung Square. Fig. 16. Map of Suning Square.
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Fig. 17. Mean locating errors when posi-
tions change.
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Fig. 18. Mean locating errors when
phones change.
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Fig. 19. Mean responding time as a func-
tion of the number of users.

Square and Suning Square, are calculated. Mean locating results in the three experiment areas are shown in Fig.
17. We can conclude no matter in which environment, SDTW can guarantee better locating accuracy than other
two point-type radio-map methods, which reveals the robustness of SDTW to di"erent environments.

7.8 Robustness vs. Phone
The calibration e"ort is the major cost of conducting radio-map location. If the locating performance can be
robust to the type of phones and environment changes, frequent recalibration will not be needed. To test the
impact of phone changes, Samsung C7, Samsung C9, Leshi and Meizu are used to collect RSS sequence. Their
sampling rates are shown in Table. 2. We regularized RSS sampling rate at 0.5 Hz for a balance of energy e!ciency

Table 2. Frequency statistics of di!erent phone brands

Phone brand Frequency (Hz)
Mi 1.43

Sumsang-C7 38.03
Sumsang-C9 34.53

Leshi 0.15
Meizu 0.52
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and sampling $delity and then calculated locating errors using di"erent phones in on-line test phase. Samsung C7
was used to in both training and testing phases, while the remaining three phones were only used in the testing
phase. The locating results by using di"erent testing phones are shown in Fig. 18. We $rst notice SDTW works
bad in Leshi phone because the RSS sampling rate of Leshi is too low to build comparable RSS sequence with the
training data. It can also be found that SDTW works better than the other two point-type radio-map methods
using other phones. It may be strange that particle $lter cannot improve locating accuracy of Point-KNN. We
give one possible reasons as that after regularizing the RSS sampling rates as 0.5 Hz, the movement consistency
of successive samples is much reduced.

7.9 Robustness vs. Date
We then test the impact of time changes on SDTW. For the experiments in NEC labs., we trained the trace-graph
on the morning of Oct. 31, 2015, when there were a few people. Then, we collected three sets of testing paths at
three di"erent times: (1) on the evening of Oct 31, 2015, when there were few people; (2) on the afternoon of Nov
2, 2015, when many people were worked in the o!ces; (3) at noon time of Nov 4 when many people worked in
the o!ces and moved in corridors. The mean locating errors of SDTW, Point-KNN and Point-PF are shown in
Fig. 20. We $nd all three locating methods keep reasonable robustness when the testing environment di"ers from
the training environment.
SDTW has better locating accuracy than the other two point-type radio-map based methods on Oct 31 and

Nov 2. Point-PF performs a little better than SDTW on Nov 4, but generally speaking, their accuracy are at the
same level.

7.10 Latency vs. The number of users
The scalability performance of SDTW to support multiple users is evaluated. We used the RSS sequences collected
in previous experiments to simulate simultaneous localization of multiple users. The number of users is denoted
byu, which varies in [1, 200]. A Thinkpad X1 computer worked as the backend server, which has 2-core processors
(Intel(R) Core(TM) i7-4600U CPU @2.10GHz 2.69 GHz) and 8.00G RAM. Multi-thread programming, i.e., u threads
were generated to response the localization tasks. Each user is handled by one thread. The mean responding
time as a function of the number of users was calculated and the result was shown in Fig. 19. It can be seen
that, when u < 70, the mean responding time is around 0.2s . This is because the multi-thread computing hasn’t
reached the computation capacity when u < 70. The user localization tasks are processed almost simultaneously
without waiting in the queue. When u > 70, the mean responding time increases linearly with the number of
users, because some tasks have to wait in the queue for the full usage of the processors. So it can be concluded
that in the worst case, the mean responding time increases linearly with the number of users. But the responding
time can be guaranteed to be small when the backend server has enough computation resources, since all users
can be localized in parallel.

7.11 Robustness vs. Walking Speed and Walking Pa#ern
To evaluate SDTW’s tolerance to the walking speed and walking pattern variance, two experiments were
conducted in the subsection. The impact of di"erent walking speeds on the locating accuracy of SDTW was $rst
evaluated. The training paths were collected by walking in almost constant middle speed, about 1 m/s. Then
three speeds were tested for online locating: (1) high speed about 3 m/s; (2) middle speed about 1 m/s; (3) low
speed about 0.5 m/s. The locating errors for di"erent speeds are shown in Fig. 21. We $nd when the training and
testing paths are collected in the same speed, the locating error is the smallest. And when the speeds are di"erent,
the locating accuracy becomes worse. We also $nd middle-speed training is more robust with low-speed testing
than high-speed testing.
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Fig. 20. Mean locating errors when envi-
ronment changes.

Fig. 21. CDF of locating error when locat-
ing speed changes.

Fig. 22. Warping path of in an instance
of walk-stop pa#ern.

Fig. 23. CDF of locating error in walk-
stop pa#ern.

Fig. 24. Floor map of the library. Fig. 25. CDF of locating error in the li-
brary.

Then we evaluated SDTW’s robustness to di"erent walking patterns. We collected training paths in almost
constant middle speed and testing paths in a walk-stop pattern, i.e., walks, stops, and then walks again repeatedly.
We compared SDTW with Point-KNN, Point-PF and an sequence-based equal-length matching algorithm in
which the distance is calculated point by point between sequences without warping. One sequence warping result
of SDTW is shown in Fig. 22. SDTW matches the moving window with indices 10 - 20 to a subsequence with
indices 16 - 19 in CSS. The stopping sequence is e!ciently warped. However, equal-length matching cannot warp
the RSSs at the stopping time. Furthermore, the CDF of locating errors in the series of walk-stop experiments is
plotted in Fig. 23. It shows that SDTW performs the best in the walk-stop pattern. The reason Point-PF works
terribly is movement consistency is broken in the walk-stop pattern. Sequence-based equal-length matching
algorithm works the worst and its bad adaption to walk patterns may be the main reason why sequence matching
locating methods were not widely used before.

8 CONCLUSION
This paper investigates feasibility and performances of indoor locating by using sequence-type radio-map. In
o#ine training phase, a trace-graph model is proposed to e!ciently calibrate and store the RSS sequences of
indoor paths, which can overcome the indoor path combinatorial explosion problem. Collaborative $lter has been
developed for $lling the missed value in trace-graph. Then in online locating phase, RSS sequences are collected
by a target using a short moving window. Based on the APs detected in the moving window, candidate sequences
are generated from trace-graph to prepare possible routes of targets for location determination. An e!cient
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subsequence dynamic time warping algorithm was then proposed to determine the location of the target, which
can tolerate the di"erences of moving speeds, moving patterns, and moving directions between the training and
locating phases. Experiments in o!ce environment shows that Warpmap is e!cient and easy to use.

However in some extremely severe circumstance, e.g. open space, the locating accuracy ofWarpMap deteriorates.
Take the library for instance, whose map is shown in Fig. 24. There are many short paths partitioned by short
bookcases there. For SDTW, it needs to remain a constant-length moving window for online locating, so SDTW
cannot shows its superiority in very short paths. Meanwhile, two paths partitioned by the bookcase shows great
similarity in their RSS sequences. Fig. 25 gives the locating results of SDTW in the library. We can see SDTW
doesn’t outperform Point-KNN in this environment. Point-PF also works poorly since movement consistency is
not obvious in short paths. Locating in open space is also a challenging problem for using WarpMap. But we can
specify grid-type paths in the open space to generate a trace graph with higher path density. The framework of
Warpmap can then be used in open space. But note that the locating accuracy of point-type radio-map in open
space is also bad because the RSS signatures are similar in nearby locations in open space.
WarpMap works as a basic block for RSS radio-map matching, it can be widely collaborated with fusion

algorithms and additional information. In future work, we will exploit the fusion of WarpMap with particle $lter,
dead reckoning algorithm using inertial sensors, and digital %oor map information. It can be foreseen that by
combining these information, sequence-based indoor location can achieve better locating accuracy. We will also
apply WarpMap method to other locating systems, such as bluetooth and ultrasound based locating system etc.
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