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A B S T R A C T

Accurately detect vehicles or pedestrians from 3D point clouds (3D object detection) is a fast developing
research topic in autonomous driving and other domains. The fundamental component for feature extraction
in 3D object detection is Set Abstraction (SA), which can downsample points while aggregating points to extract
features. However, the current SA ignores the geometric and semantic properties of point clouds and may miss
to detect remote small objects. In this paper, FocusSA is proposed, which consists two modules for enhancing
useful feature extraction in the SA layer to improve 3D object detection accuracy. At first, Focused FPS (FocFPS)
is proposed to evaluate the foreground and boundary scores of the points and reweighs the Furthest Point
Sampling (FPS) using the evaluated scores to retain more contextual points in downsampling. Then a Geometry-
aware Feature Extraction (GeoFE) module is proposed to add geometric information to enrich the awareness of
geometric structure in feature aggregation. To evaluate the performances of the proposed methods, we conduct
extensive experiments on three difficulty levels of Car class in KITTI dataset. The experimental results show
that on ‘‘moderate’’ instances, our results outperform the state-of-the-art method by 1.08%. Moreover, FocusSA
is easy to be plugged in popular architectures.
1. Introduction

Autonomous driving technologies are inspiring new applications
in transportation engineering, autonomous logistics distribution, un-
manned retail and shared travel [1–3] etc. In autonomous driving,
accurately identifying and locating pedestrians and cars in 3D scenes
is the most fundamental problem [4,5]. Point clouds are common 3D
data format that can be captured by cars using Lidar sensor or by Visual
Odometry methods [6]. Since the point cloud provides accurate (𝑥, 𝑦, 𝑧)
coordinates of the points, an object’s 3D position can be easily inferred
if the object is correctly detected [7]. So object detection from 3D point
clouds attracts great research attentions. However, due to the intricate
geometric feature and the discrete point structure, object detection
from point cloud is not easy.

User interested objects are often represented as 3D models in
early engineering applications. Targets are therefore detected by us-
ing segmentation, rendering, matching, and other approaches. These
approaches, however, are computationally difficult, inefficient, and
expensive, which are hard to be used in autonomous driving. With
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the great success of deep learning for autonomous and effective feature
extraction, researchers have exploited deep learning [8] for 3D object
detection.

The goal of 3D object detection is to extract the closest 3D bound-
ing boxes around the user-interested objects, such as the vehicles or
pedestrians. There are mainly three categories of approaches. The first
category, known as multi-view based method, which converts point
clouds from sparse formation to compact representation by projecting
them to Bird’s Eye View (BEV) or Front View (FV) [9]. However, in
most cases, this strategy results in the loss of geometric information
and local structures in the 3D point cloud. To solve this problem, The
second category of method called voxel-based, which borrows the idea
from image processing. By transforming point clouds into regular voxel
grids, they change the sparse formation to compact representations
by subdividing them to distributed voxels [10]. The third category,
i.e., point-based methods, directly perform feature learning from the
3D points [11]. The latent features in the unbalanced point clouds
are extracted via point cloud down-sampling and feature aggregation
vailable online 19 April 2023
474-0346/© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.aei.2023.101971
Received 3 February 2023; Received in revised form 29 March 2023; Accepted 8 A
pril 2023

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:ycw@ruc.edu.cn
https://doi.org/10.1016/j.aei.2023.101971
https://doi.org/10.1016/j.aei.2023.101971
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.101971&domain=pdf


Advanced Engineering Informatics 56 (2023) 101971Z. Huang et al.

o
a
p
w
t
l
s
m
f
v
a

t
b
n
t
w
i
p
c
3
s
i
S
t
B
p
n
t
k

b
p
t
e
r
f
v
d
a
f
H
p
p

o
T
p
i
a
m
p
d
3
m
c
p
g
i

from the raw input point clouds. The point-based down-sampling and
aggregation make point-based methods have flexible perception field
and are more suitable for processing naturally unbalanced points.

Despite of these advantages, the object detection accuracy of point-
based methods are still lower than that of voxel-based approaches. By
further investigating the Set Abstraction (SA) layers of the point-based
object detection networks, we found that there are still three limitations
in these methods.

(1) Existing methods have not effectively extracted the boundary
context. Because the key of the 3D object detection is to extract the
features from their surrounding points, pinpointing the objects’ bound-
aries is crucial for object detection [12]. Actually, the boundary points
can be effectively evaluated by comparing neighboring points’ features.
Then the point downsampling process can focus more on the boundary
points.

(2) The relative geometry relationships among the points are not
encoded [13] in existing feature aggregation step. Since the points on
the objects (cars or pedestrians) and the points on the backgrounds
(buildings etc.) may have quite large inter-distances, their relative ge-
ometric information contains latent information regarding the objects’
boundaries. So we should add the relative geometric information into
the feature aggregation step to utilize the geometric information.

(3) The last gap is that the far away small objects in 3D scenes
are difficult to detect. These points are few in amount and occupy
small space in the whole scene [14]. They are hard to be retained after
uniform downsampling [15]. As a result, during the down sampling
process, we should pay more attention to retain the points on the small
objects.

To tackle the above gaps, we proposes a new lightweight and ef-
fective method named Focused Set Abstraction (FocusSA). The goal is to
concentrate more on the contextual foreground and boundary points in
down-sampling and feature aggregation steps in the SA layer. This can
help to improve the accuracy of object detection, particularly for the
small objects. We in particular introduce two new modules. The first is
Focused Furthest Point Sampling (FocFPS), which exploits efficient meth-
ods to evaluate the foreground scores and boundary scores for points,
and reweighs the FPS to concentrate more on the valuable foreground
and boundary points. The second module is Geometry-aware Feature
Extraction (GeoFE), which adds relative geometric information into the
feature aggregation step. It enriches the awareness to the geometric
structure in aggregating the neighborhood features. These two modules
are easy-to-use, which can be flexibly plugged into the point-based
object detection frameworks. To balance between the widest coverage
purpose, we selectively combine the traditional SA and FocusSA in
the cascaded SA layers in both the single-stage and two-stage object
detection networks. The popular KITTI dataset is used to assess our
methods. Experiments demonstrate that our technique greatly outper-
forms state-of-the-art methods in terms of detection accuracy. The key
contributions of this work are as follows:

• A lightweight and effective Focused Furthest Point Sampling
(FocFPS) method is proposed to refrain from including too many
possibly irrelevant points and to concentrate more on the bound-
ary and foreground ones in the SA stage.

• A novel feature extraction module called GeoFE is proposed.
It can incorporate geometric relationships into original point
features for improving shape awareness and robustness.

• The proposed modules are lightweight to be integrated into
various point-based detection models.

• Experimental results show that our proposed method signifi-
cantly outperforms other methods on KITTI official dataset, and
2

generates competitive results in engineering applications. ‘
2. Related works

Our method is motivated by recent advances in LiDAR-based 3D
object detection. When utilizing LiDAR data, there are primarily two
streams.

Point-based 3D Object Detection. The first category is point-based
bject detection method. This type of methods takes raw point cloud
s input and conducts down-sampling and feature aggregation on the
oint cloud. Pointnet [11] firstly invents the point based network,
hich gradually downsamples points and generates predictions from

he kept points. PointNet++ [16] uses grouping operations (SA & FP
ayers) to extend the PointNet to retrieve features at multiple levels. To
ave memory and to cut computing costs, PointRCNN [15] directly seg-
ents 3D point clouds and manufactures high-quality 3D boxes. They

use semantic and local spatial features together. Inspired by Hough
oting, VoteNet [17] immediately votes for virtual object pointers and
ggregates vote characteristics to build a set of high-quality proposals.

In these point-based methods, down-sampling and feature extrac-
ion from raw points are generally applied in the SA layers. Point-
ased detectors widely adopt the Furthest Point Sampling (FPS) tech-
ique [11], where the furthest points are consecutively chosen from
he initial point set. In traditional FPS, all points are treated equally
ithout differentiating the points’ importance. The widest coverage

s the only criterion in point down-sampling. As a result, the im-
ortant feature points maybe missed. How to incorporate the point
ontext information into the down-sampling scheme is recently noted.
DSSD [18] introduces a fusion sampling strategy that applies both
patial distance and semantic feature distance as the sampling criteria
n FPS to pursue informative sampling with good diversity. Recent work
ASA [19] proposes to assign higher weights to the foreground points
o improve the attention to the potentially contextual valuable points.
ut in these existing works, the contexts about the most valuable boundary
oints and the geometrical relations among the boundary points and the
eighbors are not well captured. This paper presents FocusSA to capture
hese information in the down-sampling and feature aggregation steps, while
eeping efficiency of these steps.
Voxel-based 3D Object Detection. The second category is Voxel-

ased 3D object detection. This type of algorithms firstly rasterize
oint clouds into discrete grid representations (voxels & pillars), so
hat convolutional neural networks (CNN) can be applied. A pioneering
ffort called Voxelnet [20] suggests to use 3D CNN and voxelization to
epresent 3D scenes. SECOND [21] applies sparse convolution layers
or parsing the compact representation compared to the Voxelnet. The
oxel size in pillars is unique in that it is limitless in the vertical
irection. Pointpillars [22] is a seminal work in which pseudo-images
re used as the representation following voxelization. A number of
ollowing works [23–25] have employed the similar encoding method.
owever, the perception field of voxel-based methods is not as flexible as the
oint-based method. We use the geometric relationship between the points to
rovide shape awareness for point-based methods.
3D Object Detection with Multi-model Sensors. There are numer-

us techniques that combine data from several sensors to detect objects.
o produce 3D rotated boxes, these approaches combine feature pro-
osals from maps acquired from several perspectives (BEV, FV, and
mage). MV3D [9] uses the BEV map to create a collection of extremely
ccurate 3D candidate boxes that are then projected onto the feature
aps. AVOD [26] enhances MV3D by using image features during the
roposal generation step. MMF [27] presents a multi-task (ground and
epth estimation,2D object detection) multi-sensor (LiDAR, camera)
D object detection network for end-to-end training. However, many
ulti-modal techniques merely add camera features to raw lidar point

louds before feeding them to 3D detection models that are already in
lace. DeepFusion [28] proposes ‘‘inverseAug’’, which provides precise
eometric alignment between lidar points and picture pixels by invert-
ng geometric-related augmentations, and cross-attention is used by

‘LearnableAlign’’ to dynamically record the relationships between lidar
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Fig. 1. Overall architecture of Focused Set Abstraction method (FocusSA). We add two segmentation modules to evaluate the point context score and use Focused Furthest Point
Sampling (FocFPS) to update the point sampling method. Then, we add Geometry-aware Feature Extraction module (GeoFE) to encode the geometric features in feature aggregation.
and image features. A number of following works [29,30] have used a
similar technique. The point-based method studied in this paper can be
incorporated with these methods to further enhance the final performances
on 3D object detection.

Geometric Features Extraction. Following CNNs’ ground-breaking
performance, there has been a lot of interest in extending CNN to
handle geometric data. [31] improves the model’s ability to detect
objects by using a multi-scale neural network, because the multi-
scale features can provide geometric information between different
sections of 2D image. In contrast to 2D images, point clouds are
geometric data, but they are sparse, and the objects captured by the
point clouds generally have incomplete shapes. The lack of implicit
grids necessitates new building blocks to accommodate the point cloud
structure. A few studies have concentrated on the geometric learning
in 3D point clouds. KCNet [32] represents the geometric pattern using
a learnable point-set kernel. DGCNN [33] uses point relationships
learned in a high-dimensional feature space to capture comparable
local forms. ShapeNet [34] offers the normal vector and 𝑥𝑦𝑧 for each
point along with the coordinates. In [35], a geometric deep neural
network incorporates a differentiable functional map layer that enables
inherent structured prediction of correspondence between nonrigid
forms. RS-CNN [36] proposes a relation-shape convolutional neural
network, which can learn from the geometric topological constraint
among points. These existing works exploit geometric information mainly
in the CNN backbone. The proposed GeoFE module instead adds relative
geometric information in the PointNet feature aggregation step, which is
more suitable to process discrete feature points after downsampling.

3. Approach

Our work focuses on the fundamental feature extraction modules
in the SA layer. We firstly evaluate the significance of the points. The
points that are useful to object detection are more likely to be retained.
We then employ geometric relations to aggregate local and global
features. These operations are embedded in SA layer without the need
for complicated network construction. The overall structure of our
proposed method is shown in Fig. 1. The feature extraction component
is composed by a series of Focused Set Abstraction (FocusSA) layers.
Based on the original SA layer design, we embed two new modules,
i.e., Focused Furthest Point Sampling (FocFPS) and Geometry-aware
Feature Extraction (GeoFE). FocFPS updates the point sampling method
by mapping input point features to two binary segmentation masks.
GeoFE encodes the geometric features in the feature aggregation pro-
cess. Then, we use the Point Cloud Decoder to generate the point-wise
feature vector. Finally, the object detection results are output through
3

the detection head.
3.1. Focused furthest point sampling

Each FocusSA layer is composed by a FocFPS component and a
GeoFE component. In each FocFPS component, we embed two point
segmentation modules, which can evaluate the boundary score 𝑏𝑖 and
the foreground scores 𝑜𝑖 for each point, Then both scores are applied to
reweigh the Furthest Point Sampling to make the FocFPS be aware of
the object foreground and boundary features.

3.1.1. Point context score evaluation
We use a light-weight supervised method to predict the foreground

segmentation scores. This method is similar to [37,38]. However, it
differs in some aspects. For example, [37,38] focus on 2D image,
training a binary classifier (head/background) using training strat-
egy with annotated heads. Our method focuses on 3D point cloud,
which maps the input point features to the binary segmentation masks
(foreground/background). Whether a point is in the ground-truth 3D
bounding boxes or not is used as the supervision label to train a seg-
mentation model. This end-to-end architecture for supervised learning
does not require separate training.

In order to predict the segmentation annotation 𝑜𝑖 for each point, we
use several Multi-Layer Perceptions (MLPs) for process the input point
cloud. As shown in upper part of Fig. 2, we define 𝑓 (𝑆𝑘)

1 , 𝑓 (𝑆𝑘)
2 ,… , 𝑓 (𝑆𝑘)

𝑁𝑘
as the 𝑆𝑘-dimension point features, which can calculate the foreground
score 𝑜𝑖 ∈ [0, 1] through a simple MLPs:

𝑜𝑖 = 𝜎
[


(

𝑓𝑖(𝑆𝑘)
)]

, (1)

Where  denotes the MLP layers within the 𝑘th FocusSA layer,
which can mapp input features 𝑓𝑖 to foreground scores 𝑜𝑖. 𝜎 (⋅) is the
sigmoid function. 𝑁𝑘 is the total number of input points.

After evaluating the point-wise foreground scores 𝑜𝑖, we evaluate
the boundary scores for the points. As shown in Fig. 2, whether a
key point 𝑝𝑖 belongs to a boundary point can be determined by the
relationship between point 𝑝𝑖 and its neighbors. Different categories
have different characteristics, such as color, texture, shape, or reflection
intensity, especially at the boundaries. When the feature difference of a
key point and its neighbors is notable, this point is more likely to be at
the junction of different categories. We hope to preserve these valuable
points. Therefore, we design a deep network to predict the boundary
score 𝑏̂𝑖 ∈ [0, 1] for the input point cloud. Specifically, based on the
semantic labels, the boundary labels are produced on the fly.

As shown in the group point of Fig. 2, in the training samples,
according to the labels of each point, we define the boundary label by
following method. Given a certain number of points that are neighbors
of 𝑝𝑖, if there are more than a specified proportion of points that fall into
various categories, then 𝑝 is labeled a ‘‘boundary point’’, otherwise it is
𝑖
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̂

Fig. 2. Diagram of Focused Furthest Point Sampling (FocFPS). Gray and black points are belong to different categories. The red points are the transition area between two objects.
labeled ‘‘not a boundary point’’. Then, the boundary score is generated
as following. Firstly, we utilize ball query method to find neighbor
points that are within a radius. We gather features for the immediate
area and use the difference in features between 𝑝𝑖 and its neighbors
𝑝𝑗 ∈  (𝑖) as input. In order to predict the boundary score 𝑏̂𝑖 for 𝑝𝑖,
we use a number of shared MLPs. For point 𝑏̂𝑖, the boundary score
evaluation may be written as follows:

𝑏𝑖 = 𝜎
{


[


(

𝑓𝑆𝑘
𝑝𝑖 , 𝑓𝑆𝑘

𝑝𝑗

)]}

,∀𝑝𝑗 ∈ 
(

𝑝𝑖
)

, (2)

where 𝑝𝑗 is the neighborhood of 𝑝𝑖.  is the boundary detection
network in the 𝑘th SA layer.  denotes the variance of the collected
features. 𝜎 (⋅) is the sigmoid function.

3.1.2. Focused FPS by utilizing context scores
In order to preserve the positively scored points and erase those use-

less negative points, we then introduce a new point sampling algorithm,
called Focused Furthest Point Sampling (FocFPS). The fundamental
concept is to prioritize foreground and border points by a reweighing
scheme using their early predicted foreground and boundary scores.

Let 𝑛 be the total number of points, let 𝐊 be the set of already
selected points where |𝐊| = 𝑘; 𝐊 is initialized by selecting the point
with the largest 𝑥−coordinates. 𝐔 denotes the remaining points which
are not sampled yet, |𝐔| = 𝑛 − 𝑘. For each point 𝑝𝑖 ∈ 𝐔, a distance
array ⃖⃖⃗𝐝𝑖 =

{

𝑑1𝑖 , 𝑑
2
𝑖 ,… , 𝑑𝑘𝑖

}

that maintains the distances from 𝑝𝑖 to
already selected points is calculated. For points in 𝐔, their 3D coor-
dinates are

{

𝑥1, 𝑥2,… , 𝑥𝑛−𝑘
}

; boundary scores and foreground scores
are provided by two lightweight point segmentation modules, which
are

{

𝑏1, 𝑏2,… , 𝑏𝑛−𝑘
}

and
{

𝑜1, 𝑜2,… , 𝑜𝑛−𝑘
}

respectively. Then for 𝑝𝑖 ∈ 𝐔,
its distance vector ⃖⃖⃗𝐝𝑖 is weighted by the 𝛼 power of the product of the
boundary and foreground scores. This makes the weighted distance ⃖⃖⃗𝐝𝑖′

be context aware.

⃖⃖⃗𝐝𝑖′ = (𝑜𝑖 ⋅ 𝑏𝑖)𝛼 ⋅ ⃖⃖⃗𝐝𝑖 (3)

where 𝛼 is a factor that controls the importance of the semantic
and boundary information. FocFPS then selects in 𝐔 the one with
the largest weighted distance as the next sampled point, i.e., 𝑠 =
𝑎𝑟𝑔max

𝑖

({

⃖⃖⃗𝐝𝑖′, 𝑖 ∈ 𝐔
})

. Then 𝐊 = 𝐊 ∪ 𝑠 and 𝐔 = 𝐔 ⧵ 𝑠, until enough
points are sampled.
4

Algorithm 1 Algorithm of Focused Furthest Point Sampling. 𝑁 is the
total number of input points and 𝐾 will be the set of selected points, 𝑀
is the number of output points sampled by the algorithm. 𝑣𝑖 is a label
indicating whether the point 𝑖 has been sampled.

Input: coordinates 𝑋 =
{

𝑥1, 𝑥2, ..., 𝑥𝑛−𝑘
}

, distance array: ⃖⃖⃗𝐝𝑖 =
{

𝑑1𝑖 , 𝑑
2
𝑖 , ..., 𝑑

𝑘
𝑖
}

,
boundary scores: 𝐵 =

{

𝑏1, 𝑏2, ..., 𝑏𝑛−𝑘
}

, foreground scores:𝑂 =
{

𝑜1, 𝑜2, ..., 𝑜𝑛−𝑘
}

Output: sampled key point set 𝐾 =
{

𝑘1, 𝑘2, ..., 𝑘𝑚
}

1: initialize an empty sampling point set 𝐾
2: for 𝑖 = 1 → 𝑀 do
3: if 𝑖 = 1 then
4: 𝑘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑋)
5: else
6: ⃖⃖⃗𝐝𝑖

′ = {(𝑜𝑖 ⋅ 𝑏𝑖)𝛼 ⋅ ⃖⃖⃗𝐝𝑖|𝑣𝑖 = 0}
7: 𝑘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥( ⃖⃖⃗𝐝𝑖

′ )
8: add 𝑘𝑖 to K,𝑣𝑖 = 1
9: for 𝑗 = 1 → 𝑁 do

10: 𝑑𝑗 = 𝑚𝑖𝑛(𝑑𝑗 , |𝑥𝑗 − 𝑥𝑘𝑖 |)

11: return 𝐾

3.2. Geometry-aware feature extraction (GeoFE)

The point locations generally change sharply at the boundaries of
the objects. For example, for the cars or pedestrians, the points on the
background are generally far from the boundary points on the objects.
These relative location differences are important features to identify
the objects. Therefore, how to fuse these information into the feature
aggregation step is a meaningful problem. Despite the fact that CNN is a
promising approach for representing contextual shapes, its convolution
process has not encoded these geometric information on the 3D point
clouds.

Given a point cloud with 𝑁 points 𝑃 =
{

𝑝𝑖|𝑖 = 1,… , 𝑁
}

∈ R𝑁×3,
each point contains 3D coordinates 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and also includes
additional coordinates representing color, surface normal, and so on.
The input feature map 𝐹 can be denoted as 𝐹 =

{

𝑓𝑖|𝑖 = 1,… , 𝑁
}

∈
R𝑁×𝐶𝑖𝑛 , and the output feature map 𝐺 of 𝑃 can be denoted as 𝐺 =
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Fig. 3. Diagram of 2D grid convolution where symmetric operation is the aggregation function like Max, SUM or AVG.
{

𝑔𝑖|𝑖 = 1,… , 𝑁
}

∈ R𝑁×𝐶𝑜𝑢𝑡 . To this end, we formulate a general convo-
lutional operation 𝑔𝑖 for each point 𝑝𝑖 as:

𝑔𝑖 = 𝜎(
({


(

𝑝𝑖, 𝑝𝑗
)

𝑓𝑗 ,∀𝑝𝑗
})

), 𝑑𝑖𝑗 < 𝑟,∀𝑝𝑗 ∈ 𝑖 (4)

where 𝑟 is the radius of the sphere and 𝑑𝑖𝑗 is the Euclidean distance
between 𝑝𝑖 and 𝑝𝑗 .  denotes the neighborhood points 𝑝𝑗 ,  is the
aggregation function like Max, SUM or AVG, (𝑝𝑖, 𝑝𝑗 ) is a function that
returns convolutional weights based on the position relation. 𝜎 is a
nonlinear activator.

Limitations of general convolution. In the above definition, the
point convolution may be thought as a specific example of 2D convo-
lution. In classic CNN, the neighborhood (convolution kernel) of 3 × 3
kernel lies in a rectangular patch centered on pixel 𝑖.  is not shared
over each point in 𝑖, causing the incapability to process irregular
and unordered point set 𝑃 . Furthermore, it always implies a definite
positional relationship in the regular grid between 𝑝𝑖 and its neighbor
𝑝𝑗 . As shown in Fig. 3, when 𝑝1, 𝑝2,… , 𝑝𝑛 represent image pixels on a
regular grid,  is actually constrained to encode fixed position (left,
right, top, down) in the learning process. To overcome this shortage
of CNN, we provide a new geometry-aware feature extraction (GeoFE)
method. This extension is methodology simple but effective.

Feature extraction. The objective is to generate an inductive rep-
resentation 𝑓𝑃 within the neighborhood centered on 𝑝𝑖, which should
contain geometry information in addition to the original feature. The
blue points shown in Fig. 4 are the key points obtained by FocFPS in the
previous stage. When extracting features, we first get the neighbor 𝑝𝑗
of point 𝑝𝑖. Because in the neighborhood of 3D space, the coordinates
of the points may be used to acquire the global shape structure, and
the coordinate difference can be used to gain the local neighborhood
information. Therefore, we integrate the coordinates and coordinate
differences into a relation vector ℎ and add it to feature extraction, as
shown in the purple part. In detail, we replace 

(

𝑝𝑖, 𝑝𝑗
)

with a learning
mapping  of a relation vector ℎ, the preset geometric priors between
𝑝𝑖 and 𝑝𝑗 , with the purpose of  being to abstract relation expression
between two points, which may indicate their spatial arrangement. In
this way, we get the feature 𝐹 ′

𝑖𝑛 that contains the geometry information.
Fusion manners. As shown in Fig. 4, in addition to geometri-

cally encoding the features, we keep the original feature extraction
unchanged, and directly concatenate the original features 𝐹𝑖𝑛 to the
geometric features 𝐹 ′

𝑖𝑛. Despite various fusion techniques like cross-
attention or summation, are widely used for efficiency [39], we choose
the most concise concatenation. Then the final representation 𝐹 ′

𝑜𝑢𝑡 is
obtained through following calculations.

𝑔𝑖 = 𝜎(
({


(

ℎ(𝑝𝑖 − 𝑝𝑗 , 𝑝𝑖, 𝑝𝑗 )
)

𝑓𝑗 ,∀𝑝𝑗
})

), 𝑑𝑖𝑗 < 𝑟,∀𝑝𝑗 ∈ 𝑖 (5)

This extraction model is simple, including two Conv2D layers, two
BatchNorm2d layers and a relu layer. Spatial arrangement may be
encoded using . Because of its excellent mapping capabilities, we
use a shared multi-layer perceptron (MLP) in our implementation. The
aggregation function  is symmetric function max pooling, ReLU [40]
is used as nonlinear activator 𝜎. This elegantly converts 

(

𝑝𝑖, 𝑝𝑗
)

to ,
whose feature is important to both 𝑝 and 𝑝 .
5

𝑖 𝑗
3.3. Loss function

For model optimization, the total segmentation loss is divided into
two parts, foreground segmentation loss 𝑠𝑒𝑔 and boundary segmenta-
tion loss 𝑏𝑟𝑦. The foreground segmentation loss 𝑠𝑒𝑔 is computed with
a cross entropy (CE):

𝑠𝑒𝑔 = −
𝑚
∑

𝑘=1

𝑁𝑘
∑

𝑖=1
𝐶𝐸(𝑜𝑘𝑖 , 𝑜̂

𝑘
𝑖 ) (6)

where 𝑜𝑘𝑖 denotes the predicted foreground score, and 𝑜̂𝑘𝑖 denotes the
ground-truth label of the 𝑖th point in the 𝑘th SA layer. Similar to fore-
ground segmentation loss 𝑠𝑒𝑔 , we calculate the boundary segmentation
loss 𝑏𝑟𝑦 by a CE loss function:

𝑏𝑟𝑦 = −
𝑚
∑

𝑘=1

𝑁𝑘
∑

𝑖=1

(

𝑤1 ⋅ 𝑏
𝑘
𝑖 log 𝑏̂

𝑘
𝑖 +𝑤2 ⋅

(

1 − 𝑏𝑘𝑖
)

log
(

1 − 𝑏̂𝑘𝑖
))

(7)

Where 𝑏𝑘𝑖 and 𝑏̂𝑘𝑖 denote the ground-truth boundary label and the
predicted boundary score of the 𝑖th point in the 𝑘th SA layer. 𝑁𝑘
is the total number of input points, 𝑤1 and 𝑤2 are used to balance
the difference between the numbers of the two categories. The overall
segmentation loss is 𝑠𝑒𝑔 + 𝑏𝑟𝑦.

3.4. Implementation details

In this section, we describe how to implement our FocusSA in
one-stage point-based model 3DSSD and two-stage point-based model
PointRCNN.

FocusSA+3DSSD. Firstly during training phase, we automatically
label the boundary points for each input point cloud. Specially, the
points with more than 60% of the 64 neighbor points who do not
belonging to the same category are considered to be boundary points.
Then we evaluate the variance of the color features of the 64 neighbors
for each point based on the neighborhood information.

To capture a more adequate geometric relationship, the key points
that are picked from FocFPS are used to perform GeoFE. In each
neighborhood, a certain number of neighbors are chosen at random
for batch processing, and they are normalized to utilize the centroid
as the origin. We defined a vector, i.e., 𝑝𝑖, 𝑝𝑗 , 𝑝𝑖 − 𝑝𝑗 and Euclidean
distance as the relationship vector between points. Then we use a three
layer shared MLP that can adapt arbitrary continuous mappings. Batch
normalization [41] is applied in each MLP.

3DSSD provides two distinct point sampling algorithms, and each
method samples half of the total key points. To better retain more
important points from the foreground and the boundary, we leave the
number of sampled key points unchanged and replace F-FPS parts with
our proposed FocFPS. The FocFPS key points are utilized as candidate
points to produce equivalent voting points. As shown in Fig. 5, we start
implementing our FocFPS from the second SA layer, because the first
level’s raw point input cannot create meaningful semantics.
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Fig. 4. Illustrates Geometry-aware Feature Extraction (GeoFE). The blue points represent the key points after FocFPS sampling, red point is the points that need to extract features,
and the gray points are its neighbors. We use the relationship between points to re-extract features and fuse them with the original features with boundary weights.
Fig. 5. Illustration of 3DSSD backbones with Focused Furthest Point Sampling. Through the use of three FocusSA layers and a fusion sampling approach, it creates global features
for all representative points using the input of the raw point cloud (𝑥, 𝑦, 𝑧, 𝑟). We sample 16,384, 4096, and 512 points using F-FPS and FocFPS, respectively, and then combine
the two sets for the grouping process in a FocusSA layer.
FocusSA + PointRCNN. PointRCNN samples important points using
standard FPS, as shown in Fig. 6. Followed by the original data augmen-
tation strategies, we apply FocFPS in the level 2 and level 4, retaining
the initial implementation’s basic framework in place, including FP
layers. During training phase, we use the same strategy like implement
in 3DSSD to annotate the target boundary points and capture more
sufficient geometric relation. The segmentation loss weights are set at
0.001, 0.01 and 0.1 for the three levels.

4. Experimental setup

This section demonstrates the performance of our method and com-
pares it to other state-of-art methods on KITTI dataset. After that, ex-
tensive ablation investigations are carried out. To highlight significant
changes from earlier work, we also show visualization results.

4.1. KITTI dataset

KITTI dataset [42] provides three categories in 3D object detection
task, which is a prevalent benchmark, namely, Car, Pedestrian, and
Cyclist. It includes 7841 training images/LiDAR point clouds and 7518
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test samples. All training examples are separated into two categories:
train groups (3712 samples) and val groups (3769 samples), the train
split is used to train all experimental models, and the val split is used to
evaluate them. We assess on the Car classes and apply the KITTI official
evaluation procedure for submission to the KITTI test server. We utilize
the average precision (AP) measure to compare different approaches to
a set of state-of-the-art methods.

4.2. Experiment settings

According to the different point cloud networks mentioned in Sec-
tion 3.4, we integrate FocusSA on it, and assess them on KITTI object
detection task. We use the OpenPCDet toolbox to build our experimen-
tal models.

We train our model with ADAM optimizer for 80 epochs. The batch
size is 8 on four NVIDIA 2080Ti GPU cards and momentum for BN
starts with 0.9. We apply one-cycle learning rate schedule with the peak
learning rate at 0.01 and decays with a rate of 0.5 every 20 epochs.
Further, we set balance parameter 𝛼=1 in FocFPS. To avoid over-fitting,
we employ a variety of data augmentation methods, such as each
point cloud is randomly flipped along 𝑥-axis, add a random translation
(△𝑥,△𝑦,△𝑧); and random rotation following a uniform distribution
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Fig. 6. Illustration of PointRCNN backbones with Focused Furthest Point Sampling. Through the use of four FocusSA layers and a fusion sampling approach, it creates global
features for all representative points using the input of the raw point cloud (𝑥, 𝑦, 𝑧, 𝑟). With F-FPS and FocFPS, we sample 16,384, 4096, 1024, and 256 points to pass to the
subsequent grouping procedure.
Table 1
Comparison with the state-of-the-art methods on the KITTI test set for Car 3D detection. The evaluation metric is the AP calculated on 40 recall points. FocusSA obviously improves
two baselines and surpasses other state-of-the-art methods.

Method Modality 𝐴𝑃3𝐷 (%) 𝐴𝑃𝐵𝐸𝑉 (%)

Mean Mod. Easy Hard Mean Mod. Easy Hard

VoxelNet [17] LiDAR 66.5 64.17 77.82 57.51 82.00 79.26 89.35 77.39
SECOND [21] LiDAR 74.33 75.96 84.65 68.71 81.80 79.37 88.07 77.95
PointPillars [22] LiDAR 74.11 74.31 82.58 68.99 84.76 86.10 88.35 79.83
ContFuse [43] LiDAR+RGB 71.38 68.78 83.68 61.67 85.10 85.35 94.07 75.88
PointPainting [44] LiDAR 73.67 71.70 82.11 67.08 87.97 88.11 92.45 83.36
MV3D [9] LiDAR+RGB 64.20 63.63 74.97 54.00 78.45 78.93 86.62 69.80
F-PointNet [45] LiDAR+RGB 70.86 69.79 82.19 60.59 83.54 84.67 91.17 74.77
AVOD [26] LiDAR+RGB 73.52 66.47 76.39 60.23 85.14 84.82 90.99 79.62
PI-RCNN [46] LiDAR+RGB 76.41 74.82 84.37 70.03 86.08 85.81 91.44 81.00
PointRCNN [15] LiDAR 76.67 75.64 86.96 70.70 87.41 87.39 92.13 82.72
F-ConvNet [47] LiDAR+RGB 76.81 76.39 87.36 66.69 82.44 83.08 89.69 74.56
SAT-GCN [48] LiDAR 79.46 78.12 86.55 73.72 88.13 88.06 92.83 83.51
SMS-Net [49] LiDAR 77.89 76.21 87.01 70.45 – – – –
Semi-super [50] LiDAR 79.36 76.28 86.74 75.07 – – – –
RE-Det3D [51] LiDAR 78.19 78.19 – – 88.07 88.07 – –

FocusSA+PointRCNN (Ours) LiDAR 80.54 79.43 87.91 74.29 88.40 88.76 92.72 83.71
FocusSA+3DSSD (Ours) LiDAR 80.73 80.65 87.41 74.15 89.00 88.88 92.49 85.65
[

−𝜋∕4,+𝜋∕4
]

. We also employ 3D non-maximum suppression (NMS)
with a 0.01 threshold during the inference phase to eliminate duplicate
predictions.

5. Results and discussion

This section demonstrates the performances of our method. We first
discuss the main results on official KITTI test set and compare it to
other state-of-art methods. To highlight significant changes from earlier
work, we also show visualize experimental results. After that, extensive
ablation investigations and compatibility analysis are carried out.

5.1. Main results

We implement FocusSA in pointRCNN and 3DSSD networks for 3D
object detection. The result networks are called FocusSA+pointRCNN
and FocusSA+3DSSD respectively. We compare their object detection
performances with other state-of-the-art models. We ran studies on
a regularly used automotive category and compared the outcomes
using average precision (AP) with an 0.7 IoU threshold. The dataset
is divided into three complexity categories, i.e., easy, moderate, and
hard, depending on item size, occlusion, and truncation.

In Table 1, we compare our methods, i.e., FocusSA+pointRCNN and
FocusSA+3DSSD with other 3D detectors on KITTI test set, The results
evaluated using 3D and BEV APs at a 0.7 IoU threshold. It can be seen
that our proposed networks not only outperform their baseline, but also
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outperform almost all state-of-the-art methods. Our technique beats
3DSSD and PointRCNN on the primary measure, AP on ‘‘moderate’’
cases, by 1.08% and 3.79%, respectively. Our method also outperforms
PointRCNN on ‘‘hard’’ instances by 3.59%. Furthermore, the bird’s-eye-
view (BEV) APs also outperforms the ‘‘moderate’’ cases in the class Car.
It takes around 10.1 fps on the KITTI dataset. Our strategy delivers
considerable gains at the moderate and difficult levels, which can
preserve enough important foreground & boundary points and extract
geometric information for better detecting objects. The results indicate
its important implications for utilizing the point features in the FocusSA
layers. Furthermore, the total number of parameters utilized to train
the FocusSA models is 2.85M. This demonstrates its enormous potential
for real-time applications such as scene parsing in autonomous driving.

It should be noted that at a high computational cost, the current
SOTA approaches extract point cloud features using a transformer-
based backbone with several parameters. FocusSA portable, lightweight
applicable to point based methods but incompatible with Transformer
based SOTA techniques. We did not compare some SOTA algorithms
for this reasons.

5.2. Visualization

The sampled important points by the latest SA layers of FocusSA
on the KITTI dataset are seen in Fig. 7. The red dots in the picture
indicate the 256 key points sampled by the final SA layer, while the
white ones represent the background points. FocusSA can keep more
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Fig. 7. Visualizing detection results on KITTI val split. The labels for the predictions and the ground truth are colored in red and green respectively. Pink dots denotes the 512
key points sampled in final last FocusSA layer.
Fig. 8. Visualizing results of FocusSA (top) and 3DSSD (middle) on KITTI validation set. The predicted bounding boxes are shown in green. Bottom line is a 2D color map for
easy observation.
points on foreground and boundary for challenging cases, even for
heavily obstructed or small objects. Fig. 9 depicts the sampling results
of various existing methods. It is evident that our approach retains more
key points. As a result, our suggested FocFPS sampling technique is
more likely to detect objects.

The outcomes of FocusSA on KITTI are shown in Fig. 8 (top). The
expected bounding boxes are colored green, and the whole point cloud
is colored white. The things that our technique successfully detects but
that are not recognized by 3DSSD are shown by red arrows and circles.
In the bottom row, we also display the images gathered from the 2D
scene for ease of viewing and comparison. The graphic makes it very
evident that our technique is more accurate in detecting far-off objects.
Additionally, it is possible to identify distant objects that are obscured.

5.3. Ablation study

In order to prove the effectiveness of our method that combines
the semantic and shape relation information of the objects proposed in
this paper, this section conducts more specific experiments. All ablation
investigations are performed on the KITTI dataset [42].

Effects of Focused Furthest Point Sampling. As shown in Table 2,
the baseline object detection network is 3DSSD [18] which uses F-FPS.
We compare the performances when using and not using FocFPS or
GeoFE in the SA layer. The APs of our method are all greater than
those without these operations under various assignment schemes. In
Table 2, the 1st row displays the original model’s findings without any
of our approaches. The 4th row depicts the result of employing FocFPS.
This sampling technique provides a substantially higher mAP, 1.14%
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better than the one using F-FPS [18] alone. This is because our method
is easier to recognize small objects in challenging cases. The 2nd and
3rd rows illustrate the results of employing semantic information and
boundary information as key point selection criteria, respectively. It
illustrates that both of them can benefit the classification results.

Effects of Geometry-aware Feature Extraction. The last row of
Table 2 demonstrates that using GeoFE, our method has been enhanced
by 0.01%, 2.67% and 0.83% accordingly on the basis of FocFPS.
This demonstrates how adding object geometry relations into feature
extraction improves object detection accuracy. In addition, the last
row is not the highest on the ‘‘easy’’ cases, the reason is that, we
utilize KITTI dataset in the experiment, which feeds all data into the
network simultaneously. Hence, we output the network results together
instead of training each case separately. When evaluating the model’s
performance, the ‘‘easy’’, ‘‘moderate’’, and ‘‘hard’’ cases must be all
taken into account. In fact, it is not always the case that ‘‘easy’’,
‘‘moderate’’, and ‘‘hard’’ will increase simultaneously. Throughout the
training process, the model will be updated based on data sets of
varying difficulty to improve robustness and generalization ability.

Effects of Balance Factor. We replace the F-FPS section with
suggested FocFPS, at the same time, we keep other sample parameters
constant, as illustrated in Fig. 5. We also compare FocFPS with various
balancing factor values 𝑎𝑙𝑝ℎ𝑎 from the third to sixth row of Table 3.
It demonstrates that whether FocusSA is effective or not is largely
limited by the sampling points. A big or small 𝑎𝑙𝑝ℎ𝑎 could not ade-
quately increase detection accuracy. When 𝛼 is close to 0, FocFPS will
degrade to vanilla FPS, when 𝛼 becomes extremely large, key points
may be crowded into a few easily identifiable instances while failing
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Fig. 9. Visual comparison of the FocusSA sampling method and various SOTA sampling methods. FocusSA can get more significant foreground and boundary points.
.

Table 2
Ablation study on the 3DSSD baseline modules, we provide the Car AP on KITTI val
split. Here, ‘‘FocFPS.’’ and ‘‘GeoFE’’ denote the Focused Furthest Point Sampling Model
and Geometry-aware Feature Extraction respectively. *S., and *B. denote using semantic
information and boundary information as the criterion to choose key points respectively

FocFPS (*S.) FocFPS (*B.) FocFPS GeoFE Easy Mod. Hard mAP

× × × × 91.57 82.24 80.45 84.75
✓ × × × 92.36 83.02 80.77 85.38
× ✓ × × 92.92 82.74 80.48 85.37
✓ ✓ ✓ × 92.32 83.04 82.31 85.89
✓ ✓ ✓ ✓ 92.33 85.71 83.14 87.15

Table 3
Comparison of the performance of FPS, F-FPS, and FocFPS with various balancing
parameters.

Sampling method FocFPS Fusion sampling Mod. Easy Hard

FPS × × 82.75 91.08 79.93
F-FPS × ✓ 83.46 91.54 82.18
FocFPS (𝛼=0.1) ✓ ✓ 83.07 91.78 80.38
FocFPS (𝛼=1) ✓ ✓ 85.71 92.33 83.14
FocFPS (𝛼=10) ✓ ✓ 83.51 92.08 82.32
FocFPS (𝛼=100) ✓ ✓ 83.03 91.57 80.28

to cover distant or occluded instances, thus failing to capture object
shape information. Therefore, 𝛼 = 1 is a suitable choice, as all three
difficulty levels achieve adequate performance at the same time. It is
worth noting that there are green false detection boxes on the first and
second subgraphs of Fig. 9. Due to oversampling, model training may
prefer to anticipate positive samples while discarding negative data,
resulting in an imbalance of positive and negative samples. As a result,
it is necessary to adjust the sampling weight in accordance with the
practical applications.

Geometric relation ℎ. Understanding how to define ‘‘relation’’ is a
problem worth studying because the core of GeoFE to learn from the
relationships between points. Relation can be defined whatever you
like as long as it can represent underlying form discriminatorily. We
experiment with four intuitive connection definitions as examples in
order to test this claim and make it easier for people to grasp. The
findings are shown in Table 4.

It can be seen that only using 3D Euclidean distance in model B
reach 85.24%, higher than model A by 2.2%. This demonstrates the
effectiveness of geometric relation in feature extraction. Additionally,
we introduce a new connection involving the difference between the
coordinates (model C) and the coordinates themselves (model D). The
findings are all far better than the original model. Experiments shows
that when 3D Euclidean distance, difference between the coordinates
9

Table 4
The results (Moderate AP%) of four intuitive geometric relations vector, Model A is
the original model; Model B applies 3D Euclidean distance (3D-ED); Model C use the
coordinates difference and 3D-ED; Model D adds the coordinates of two points.

Model Geometric relation vector Channels Mod.

A – 0 83.04
B 3D Euclidean distance 1 85.24
C (3D Euclidean distance, 𝑝𝑖 − 𝑝𝑗 ) 4 85.36
D (3D Euclidean distance, 𝑝𝑖, 𝑝𝑗 , 𝑝𝑖 − 𝑝𝑗 ) 10 85.71

Table 5
Complexity of FocusSA in point cloud classification.

Method Input data #params

LiDAR IMG

PCNN [52] ✓ 8.20M
PartAˆ2 [25] ✓ 6.38M
SECOND [21] ✓ 5.33M
PointRCNN [15] ✓ 4.40M
ImVoteNet [53] ✓ ✓ 4.12M
PointNet [11] ✓ 3.50M
MVXNet [54] ✓ ✓ 3.35M
ImVoxelNet [55] ✓ ✓ 3.12M

Ours ✓ 2.85M

and the coordinates themselves are included, the model D performs the
best, achieving 85.71%. This further highlights the utility of the GeoFE.

5.4. Compatibility analysis

FocusSA is effective and easy-to-plug-in in point-based detection
methods. It obtains notable enhancement on both one-stage model
3DSSD and two-stage model PointRCNN. In this section, we will test
its compatibility.

As shown in Table 6, algorithms embedded in FocusSA improve
the detection performance for all difficulty levels. In moderate mode,
our model outperforms by 1.95% and 2.25% AP compared to one-
stage method 3DSSD, and outperforms by 0.64% and 0.96% AP in
Hard case. Furthermore, when compared to the two-stage method,
PointRCNN, our method outperforms by 1.86% and 0.55% AP in the
Hard case. These difficult objects inherently have few 3D points, which
are difficult to preserve during sampling. Our method focuses on more
important points and fuses the geometric feature, which can preserves
rich information and accomplish accurate classification results. Table 5
summarizes the number of params and the modality data of FocusSA
in classification. Compared with PointRCNN and PointNet, FocusSA
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V

Table 6
Compatibility study of FocusSA in two different point-based detection method, We assess it using the KITTI val split of Car class. *FF. *FE
represents FocFPS and GeoFE respectively.
Method Easy ↑ Mod. ↑ Hard ↑ mAP ↑

3DSSD [18] 91.54 83.46 82.18 85.73
FocusSA(*FF) 92.29 (+0.75) 85.41(+1.95) 82.82 (+0.64) 86.68 (+1.11)
FocusSA(*FE) 92.33 (+0.79) 85.71(+2.25) 83.14 (+0.96) 87.15 (+1.58)

PointRCNN [15] 91.57 82.24 80.45 84.75
FocusSA(*FF) 92.32 (+0.75) 83.04 (+0.8) 82.31 (+1.86) 85.89 (+1.14)
FocusSA(*FE) 92.36 (+0.79) 82.90 (+0.66) 81.00 (+0.55) 85.43 (+0.67)
D

t
Y
K
p
F

D

R

reduces the params by 35.2% and 18.6%, respectively, which demon-
strates its high potential for real-time applications such as scene parsing
in autonomous driving.

5.5. Summary

The extensive experiments evaluated FocusSA from different per-
spectives. These perspectives include official test set, data visualiza-
tion, serial ablations and compatibility analysis. The key findings are
summarized below.

1. Our method has a higher AP than compared methods on the
official KITTI test set, particularly in the ‘‘moderate’’ cases, and
beats PointRCNN on ‘‘hard’’ cases by 3.59%.

2. The addition of semantic information allows the sampling
method to preserve more foreground boundary points and im-
proves long-distance and small object detection accuracy.

3. The ablation experiment shows that using geometric information
can better enhance feature extraction and detection outcomes,
and the mAP is raised by 1.26%.

4. The comparison experiments demonstrate that FocusSA can be
used to both the two-stage algorithm as well as the single-stage
algorithm. The structure’s architecture is straightforward and
efficient.

6. Conclusion

In this work, FocusSA, namely, Focused Set Abstraction has been
proposed. It suggests the FocFPS and GeoFE two modules in the set
abstraction layer. The FocusSA architecture is easily incorporated into
existing pipelines for point-based point cloud perception. The core of
FocusSA contains two components. The first is FocFPS, which incor-
porates semantic and boundary information to guide FPS to better
sample potential objects. The second is GeoFE, which enables explicit
reasoning about the spatial relationship for discriminative shape aware-
ness. The experimental results show that FocusSA performs better in
3D object identification when measured against the KITTI benchmark’s
official ranking criterion. It outperforms 3DSSD and PointRCNN by
1.08% and 3.79% on ‘‘moderate’’ instances in Car class. It is an easy-to-
plug-in module which can enhance many 3D object detectors, especially
point-based method, including 1-stage and 2-stage ones. We believe
that our findings will inspire the scientific community to address the
bottleneck of autonomous driving technology, increase the vehicle’s
capacity for object detection in hard instances.
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