2242

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

WCS: Weighted Component Stitching
for Sparse Network Localization

Tianyuan Sun*, Yongcai Wang™, Member, IEEE, Deying Li

, Member, IEEE,

Zhaoquan Gu, Member, IEEE, and Jia Xu, Member, IEEE

Abstract— Network location is one of the critical issues and a
challenge in wireless sensor and ad hoc networks, in particular
when networks are sparse. However, even in highly sparse
networks, there exist well-connected subgraphs while the distrib-
ution of the networks is random. This paper introduces weighted
component stitching (WCS) to find redundantly rigid components
with high redundant ratios, which can be used to generate reliable
local realization. Finding and ranking the redundantly rigid
components is an NP-hard problem (a reduction from maximum
quasi-clique). Here, we introduce a series of theorems and
algorithms to carry out WCS efficiently. More precisely, we prove
that each graph has a determinant number of redundantly
rigid components, each redundantly rigid component is covered
by a set of basic redundant components (BRCs), and each
BRC contains one redundant edge. We apply constraints to
merge the BRCs to form components with higher redundancy
ratio and develop a greedy algorithm to merge BRCs to form
locally mostly redundant components (LMRCs). Finally, we give
the approximation ratio. The local coordinates of nodes are
calculated by optimization in each LMRC and are synchronized
with weights to produce the global coordinates of nodes in the
network to overcome the sparseness of subgraphs. Extensive
experiments demonstrate significant improvements in accuracy
(45%-64%) using our WCS method over the state-of-the-art
algorithms under various settings of network sparseness and
ranging noises.

Index Terms— Network localization, graph realization, compo-
nent stitching, redundantly rigid, sparse network.

I. INTRODUCTION

ETWORK localization, which infers node locations by
N ranging measurements among nodes is an important
problem in ad-hoc and wireless sensor networks. It has
attracted great attentions for wide applications in location-
based services, monitoring, and surveillance etc. Existing stud-
ies investigate network localization mainly from two aspects:
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(1) localizability properties [1]-[8], which investigates the
conditions of whether a given network or a subset of nodes
can be uniquely localized when the distance measurements are
given. It is mainly based on the rigidity theory; (2) localization
algorithms, which are different kinds of algorithms to calculate
node locations based on the distance measurements. In the
localization algorithm aspect, three kinds of algorithms have
been proposed: 1) optimization-based algorithms [9]-[12];
2) distributed algorithms [2], [13], [14]; 3) component
stitching-based algorithms [15]-[17]. These algorithms will be
introduced in Section II.

A key remaining challenge of network localization is the
hardness to obtain accurate localization in sparse networks,
which are very general application scenarios. The wireless
nodes have limited ranging scope, but are generally widely
spread in space. In this paper, we consider localization in
randomly distributed sparse networks, where nodes have small
average degree (i.e., < A). The network topology calculation
is focused, without using anchors.

Existing network localization algorithms generally have
good performances in networks with dense edge measurements
(enabling the graph to satisfy global rigid condition [1]). But
they provide unsatisfactory localization results when the dis-
tance measurements are sparse. This is because the non-global
rigid graphs cannot be uniquely realized [1], [2]. Because of
under-determinant optimization, especially in the case when
there are no anchors, the errors in the sparse parts may pollute
the optimization of the whole graph.

But well-connected components exist even in highly sparse
random networks due to the uneven node distribution. The
local coordinates of nodes in the well-connected compo-
nents can be calculated rather reliably. We therefore propose
weighted component stitching (WCS). WCS finds the sub-
graphs with high redundant ratios and partitions the graph into
components ranked by the redundancy ratios. The local coor-
dinates in each component are calculated by local optimization
algorithms [10]-[12], and then the local coordinates of nodes
are synchronized with weights to generate network coordinates
by component rotation and transition. Wang et al. [18] study
this problem in sparse UAV network for formation tracking.

But we show the problem to find and rank the redundant
rigid components is NP-hard, by reducing from the maximum-
quasi clique problem. So it is infeasible to find and rank
the components with different redundant ratios precisely. We
therefore propose theorems and algorithms to approach the
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weighted component stitching (WCS) efficiently. The detailed
technical contributions of this paper are as following:

1) The problem to find and rank the redundant components
of different redundant ratio (RR) is proved NP-hard by
reducing from the maximum quasi-clique problem.

2) We investigate the distribution of redundant rigid com-
ponents in a graph and prove Extreme Redundant Com-
ponents (ERC) are distinct and determinant. All the
redundant rigid components must be within the ERCs.

3) We prove each ERC is covered by the union of a set of
Basic Redundant Rigid Component (BRCs). Each BRC
is 1-redundant rigid. An efficient algorithm to detect the
BRCs by bipartite matching is proposed.

4) Necessary and sufficient conditions to merge BRCs to
form more redundant components are proposed. An effi-
cient greedy algorithm is developed to merge BRCs
to form Locally Most Reliable Components (LMRC),
whose approximation ratio is derived.

5) Efficient algorithm for weighted component stitching
is designed by iteratively updating rotation matrices of
components and global coordinates of nodes. The RRs
of different LMRCs are utilized as weights in weighted
component stitching.

6) Extensive simulations show dramatical accuracy impro-
vement (45 %-64 %) of the proposed algorithm
than the state-of-the-art of component stitching algo-
rithms under different network connectivity and noise
level settings.

The remaining parts of this paper are organized as follow-
ing. Related works are introduced in Section II. Problem model
of WCS is presented in Section III. Network redundancy
structure is investigated in Section IV. BRC detection, merging
algorithms, and component based weighting algorithms are
presented in Section V, VI respectively. Simulation results are
presented in Section VII. The paper is concluded with remarks
in Section VIII.

II. BACKGROUND AND RELATED WORKS

A. Problem Formulation

G = (V, E) represents a graph consisting of |V'| = n nodes
and |E| = m edges. An edge (i,j) € FE if the distance
between v; and v; can be measured. The measured distance is
denoted by d;;, which can be obtained through signal round-
trip time [19] or by signal time of arrival(TOA) [20]. The
distance measurements are noisy and sparse. The network
localization problem, which is also known as graph realization
problem is to find d-dimensional embedding {p1,p2,...,Pn}
(pi € RY) such that [|p; — p;ll2 = di; for all (i,j) € E. In
noisy case, it can be characterized as a stress minimization
problem [15].

Z (Ipi = pjll2 — diz)* (1)

(i.5)eE

Stress(pi,p2, ... ,Pn) =

B. Related Works

Network localization problem has attracted great research
attentions. Existing works can be roughly classified into two
categories: 1) theoretical fundamentals; and 2) localization
algorithms.
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1) Theoretical Fundamentals: Some fundamental theories
and conditions for network localization has been presented in
the literature.

a) Localizability conditions: Whether a network can
have unique localization solution is a crucial problem, which
is investigated by rigidity theory by Jackson and Nixon [1],
Goldenberg et al. [2], [3] and Aspnes ef al. [21], and
Yang et al. [4], [5] et al. A network can be uniquely
localizable if and only if the underlying graph is global rigid
[22]. In 2-D networks, global rigid requires the graph to be
3-connected [6] and redundant rigid [5]. Redundant rigid
means the graph is rigid after removing any one edge. The
necessary and sufficient condition for a 2-D graph being
rigid is given by Laman [7] in 1979. Later in 1992 and
1997, Hendrickson and Jacobs proposed matching based
[8] and Pebble game algorithms [7] respectively to test
2-D graph rigidity in polynomial time. Connelly [23]
showed that the Laman condition is only necessary in
R? d > 3. Necessary and sufficient conditions for judging
graph rigidity in higher dimension by the rank of stress
matrix are proposed by Connelly [23], Gortler et al. [24],
which shows a graph in R? d > 3 is rigid if and only if
rank(Q) =n—1—d, where Q is the associated stress matrix
derived from the graph. Polynomial time random algorithms
are proposed for verifying graph rigidity in higher dimensions.

Yang et al. have shown the necessary [4] and sufficient con-
dition [5] for a node in the network to be uniquely localizable.
Sun et al. [25] propose metrics to evaluate the risks of flip
and flex ambiguity under ranging noises. Shames et al. [26]
study the solution uniqueness condition in cooperative local-
ization and mapping problems. Shamsi e al. [27] study the
conditions for correct network localization by SDP relax-
ation. They show the sparse triangulation graph can insure
the correctness of SDP relaxation. The essence is that the
triangulation graph is rigid. But in this paper, we consider
more general sparse networks, which may not satisfy the
triangulation graph condition.

b) Performance bounds: Cram’er-Rao lower bound
(CRLB) [28], [29] which is also known as Fisher information
inequality is mainly used to establish the lower bound of
location error for network localization under noisy distance
measurements. Shen et al. [30] derive the limits of network
navigation accuracy using equivalent Fisher information analy-
sis. Another work of them [31] derive squared position error
bound (SPEB) based on Fisher information for wideband
wireless network localization in harsh multipath environments.
A recent work of Mazuelas et al. [32] investigate the location
error bound using soft range information. Aspnes et al. [21]
present complexity bound of network localization under dif-
ferent network parameters.

2) Localization Algorithms: Localization algorithms are
summarized into three categories:

a) Optimization-based algorithms: Network localization
problem is naturally an optimization problem to minimize (1).
Different optimization algorithms such as Multi-dimensional
Scaling (MDS) [9], SMACOF [10], Semi-definite program-
ming (SDP) [11], and G20 [12] are proposed. MDS [9]
solves this problem by matrix decomposition, which requires
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the network is a complete graph. SMACOF [10] is a global
optimization algorithm, which constructs a quadratic function
to approximate the stress function in each step. SDP [11]
approaches localization by relaxing the problem to a convex
semidefinite programming problem. The speed of centralized
SDP is not satisfactory. Further results to relax the single
semi-definite matrix cone into a set of small-size semidefinite
matrix cones are presented in [33]. G20 [12] seeks the optimal
location by gradient descent. They perform well in well-
connected networks, but performances drop when networks
become sparse and no anchors are used.

b) Distributed algorithms: Distributed algorithms also
call great attentions. Robust Triliteration is proposed in [13],
which starts from three anchors (or localized nodes) and
finds robust quadrangle to locate the unvocalised vertex.
Liu et al. [34] propose error management method in distrib-
uted localization to exclude outliers during sequential localiza-
tion. Cota-Ruiz et al. [35] propose distributed algorithm to let
each node iteratively solve a set of local spatially-constrained
programs. Goldenberg et al. propose SWEEP [2] to localize
nodes by constructing biliteration graphs. Khan e al. study
distributed algorithms to use minimal number of anchors and
by noisy measurements [36], [37]. Shi et al. [38] propose
Sequential Greedy Optimization to solve SDP in distributed
way. Soares et al. [39], Simonetto and Leus [40] propose
convex relaxation of the network localization problem and
fully distributed algorithms to solve. Piovesan and Erseghe
[41] recently propose distributed algorithm which transits the
convex relaxation to the original on-convex formulation to
approach the local minimum of the original problem.

c) Component stitching algorithms: Component stitching
algorithms calculate node local coordinates in components;
synchronize components by rotating and transiting to produce
the node coordinates of the network. The centralized algo-
rithms [9]-[12] and distributed algorithms [36]-[42] can all
be adopted in the component localization. Representative com-
ponent stitching algorithms include CALL [17], ETOC [14],
AAAP [15], ARAP [15] and ASAP [16]. ETOC [14] and
CALL [17] study how to localize components by anchors,
which haven’t used the iteratively component synchronization.
Differently, AAAP [15], ARAP [15] and ASAP [16] adopt
local location calculation in each components, and coordinate
synchronization by iteratively adjusting the rotation matrices
of components. Component stitching generally infer network
topology without using external anchors. The component
stitching can effectively avoid cumulative errors. But in sparse
networks, the inaccurate components will pollute the synchro-
nization results of the network.

III. MODEL OF WEIGHTED COMPONENT STITCHING

A. Mathematical Model

We firstly give some definitions for clearly presenting the
WCS model.

Definition 1 (Edge Set Independence [7]): The edges of a
graph G = (V, E) are independent in R? if and only if no
subgraph G' = (V' E") has more than 2|V'| — 3 edges.
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Definition 2 (Laman Graph [7]): A graph is Laman Graph
if the edges of E are independent and |E| = 2|V| — 3.

Definition 3 (Rigid Graph): A graph is rigid if and only if
it contains a spanning Laman Graph as a subgraph.

Definition 4 (Redundant Rigid Graph): A graph G =
(V, E) with realization in R? having n > 2 nodes is redun-
dantly rigid if and only if it remains rigid after the removal of
any one edge (i,j) € E.

Existing works [15], [16] divide components by the one-
hop neighbors of each node. In WCS, we propose to find
and rank the redundant rigid components in the graph. To
present the WCS model, we firstly assume the redundant rigid
components can be successfully detected and are ranked by
a proposed redundant ratio (RR) metric, which are denoted
by G° = {G§,G5,GS, ..., GS }. The superscript ¢ indicates

¢ is a component and the subscript £ is the component
index. The local coordinates of nodes in G, are calculated by
algorithms such as SDP [11], MDS [9], or SMACOF [10].
Node i’s local coordinates in GfY, is denoted by qf’k. We
use 7 to denote the RR metric of the component Gf. Let
wy, = f(ry) be the synchronization weight calculated based on
the RR metric. Then the cost function for weighted component
synchronization in WCS is defined as:

{XjEjme P;)

R k=1 (i,5)€G¢
k
- Ri(q;

" PR

I} (2

where P = {p1,pa,...,pn} are the global coordinates to
calculate; Ry, is the rotation matrix of the component G§. The
problem is to determine P and R{ to R such that the global
coordinates are best synchronized with the local coordinates
in the components.

— a5 )P (R)TRE =

B. Redundant Ratio: (RR)

Redundant ratio is designed to evaluate the edge redundancy
in a component. A redundant rigid graph G(V, E) must be
rigid, it contains a rigid spanning graph (Laman graph) [42],
denoted by £. Edges in L are necessary edges to guarantee
rigid; denoted by £. Edges in E — £ are redundant edges,
which are denoted by F = E — £. In R2, in a redundant
rigid graph with n nodes, its Laman spanning graph contains
exactly 2n — 3 edges [43]. Therefore, the number of redundant
edges is |F| = |E| — (2n — 3).

Definition 5 (Redundant Ratio (RR)): Considering a red-
undant rigid graph G = (V,E) with |V| = n, if it has a
redundant edge set F, the redundant rate (RR) is calculated as
r(G) = % where C(n,2) = % So r(G) = 71,(27|L]—:|1)

The proposed RR metric 7(G) is a variation of the tradi-
tional edge density metric (G), which is the ratio of edges
in G to the number of edges in a complete graph, i.e., %
[44]. So 7(G) = ~(G) — % The reason is that v(G)
cannot discriminate the complete graphs with different number
of vertices. Let K4, and Ky be complete graphs with four
and five vertices respectively. We have v(Ky) = v(K5) and
r(K5) > r(K4). This is a desired property because K5 has
more constraints which is more reliably realized than K.
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C. NP Hardness

The key problem is how to find the redundantly rigid
components and rank them by RR.

Definition 6 (Locally Most Reliable Component (LMRC)):
A LMRC is a redundant rigid component that 1) any subgraph
of it will have smaller RR than itself, and 2) any graph
covering it will have smaller RR than the LMRC.

Theorem 1: Finding the LMRC in a given graph G =
(V, E) is NP-hard.

Proof: The traditional determination problem of maximum
quasi-clique is to find the maximum ~-dense component,
i.e, to find the connected component G’ with the maximum

number of vertex, s.t., Cl(ﬁlQ) > ~. Note that r(G") =
2n’—3

v(G") — C(5y- Then we prove by contradiction. Given 7,
if the problem of finding the component with highest RR can
be solved in polynomial time, i.e., v — 62‘7171_23 is the maximum
in the detected connected subgraph G*, then G* must be the
component with the maximal number of vertices, since the
larger is n, the smaller is c%?r;g) when n > 3. So we find the
component with the maximum number of vertices of density
v in polynomial time. This is contradict because finding the
maximum ~-dense component is known NP-complete [45].
O
Since finding the most redundant LMRCs is NP-hard,
it is not trivial to find and rank the redundant components.
We investigate the structural properties of the redundantly
rigid graph to propose efficient methods to find the compo-

nents with different RRs.

IV. REDUNDANT RIGID GRAPH CHARACTERISTICS

At first, how the redundantly rigid components may distrib-
ute in a graph G is investigated.

Lemma 1: Given two redundantly rigid graph G, =
Vi, E1) and Go = (Va, Es), G1|\J G2 is redundantly rigid
if and only if [Vi (V| > 2.

Proof: By definition, both of the graph G; = (V1, E4)
and G5 = (Va, E») contain a spanning Laman Graph as a
subgraph, denoted as Ly and L. Supposing |V N V| = k,
then |V (L1NL2)| = k. It has been proven that L1 U L is rigid
when k > 2 [46]. So Ly U Lo is rigid when |V; (V2| > 2.

For each edge e in graph G1|J G2, G1 | JG2 —e = (G1 —
e)|J(G2—e). We can find the Laman Graph L C G; —e and
L, C Gy — e when G and G are redundantly rigid. What's
more, |V(LiJL5)| > 2. So L} |J L} is rigid, and G |J G2
is redundantly rigid. (]

By Lemma 1, if two redundantly rigid subgraphs share not
less than two vertices, their union is redundantly rigid. So
a redundantly rigid component is disjoint only if it has less
than two vertices with others. Two concepts of Extremely
Redundant Rigid Component and Basic Redundant Rigid
Component are defined:

Definition 7 Extremely Redundant Rigid Component, ERC:
A component Gy in graph G is called an Extremely Redun-
dant Rigid Component if there is no other redundantly rigid
components, whose subgraph is G\.

Definition 8 Basic Redundant Rigid Component, BRC: A
redundant rigid component G' in graph G is a Basic
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Redundant Rigid Component if any subgraph G" C G’ is
not redundantly rigid.

An ERC is a disjoint redundant rigid subgraph. It remains
rigid if removing any one edge from it. A ERC may contains
many number of redundant edges. A BRC, instead, is a small
redundant rigid component in ERC which contains only one
redundant edge.

Lemma 2: Given a rigid graph G = (V, E) with redundant
edges, there is a determinate set of disjoint ERCs: C' =
{ERCy,ERC5, ERCs5... ERCy},k > 0, which covers all
redundant edges in G, and VERC;, ERC; € C, E(ERC;) N
E(ERC;) = @.

Proof: Consider the rigid graph contains & redundant
edges. If the ERC set isn’t unique, there must be two
sets C1 = {ERC{,ERC) ERC;...ERCi,} and Cy =
{ERCY,ERCY,ERCY ... ERC},}, which are not exactly
the same. So 3ERC] € (s, VERCJ‘ € C1, ERCY # ERC]’-.
If [V(ERC] N ERC})| > 2, the graph ERC]'|JERC] is
also redundant rigid, which is inconsistent with the defi-
nition of ERC is the largest redundant component; if Vj,
[V(ERC] N ERCY)| < 2, the redundant edge in ERC}
is not covered by any ERCs in (4, this is contradict with
that ERC's in Cy cover all the redundant edges. So there
is only one set of disjoint ERCs covering all the redundant
edges. 0

From Lemma 2, when a set of ERCs are found, the set
of ERCs are disjoint and determinate. The ERCs can be
found by Pebble game [7] in polynomial time. But in ERCs,
we should further detect the denser subgraphs, because the
denser subgraph has more reliable local realization than the
ERC. Therefore, we consider LMRC detection in each ERC.
We firstly show that each ERC is covered by a set of
BRCs.

Theorem 2: For any ERC; € G, there is a combi-
nation BRC1, BRC5, BRCs,...,BRCx € G, such that
BRC1|UBRCy|JBRCsJ...\UBRCk = ERC,.

Proof: For any FRC; € G, we can find a
Laman Graph L; C FERC; and the accompanying redun-
dant edges. Then by finding the Hungarian tree of each
redundant edge [8], a combination of BRCs can be
found, denoted as BRC, BRCs, BRCs3,...,BRCg. C' =
BRC1|UBRCy|JBRCsJ...\UBRCk and C" C ERC,;.
If E(ERC; — C") # (, for each e € ERC; — C', ERC; — ¢
is rigid and contains a Laman Graph L.. Then we can find
a BRC in L. + e, denoted as BRC,.. Add BRC, into the
combination C” and the combination can cover all edges in
ERC;, so that there must be C' = ERC;. O

So the key problem is how to find the BRCs, whose
distribution implies the distribution of the redundant edges.
The BRCs be merged efficiently to find the dentist components
in the ERC.

V. FINDING AND MERGING THE BRCSs

We present an efficient algorithm based on Bipartite Match-
ing to find the BRCs. The input is a graph G. The ERCs in
G are detected by Pebble game [7]. The remaining problem is
how to detect BRCs in each ERC. So we consider G = (V, E)
is an ERC in Algorithm 1.
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Fig. 1. Example of matching-based redundant rigidity test. (a) An example
K4 graph; (b) The bipartite graph model of K4. Three additional copies
of eg are added for matching the vertex freedoms; (c) The matching result,
in which, eg cannot find a match, so eg is a redundant edge. The matching
results are also highlighted in (b); (d) the Hungarian tree rooted at eg. All
edges e1 to es appear on the tree, so they are dependent with the redundant
edge eg.

€y

(@)

A. Bipartite Matching to Detect Independent Edges

Bipartite Matching-based rigidity test method [8] was tradi-
tionally designed to test whether a given graph is rigid or not.
We improve the method to output the BRC set when there are
multiple redundant edges in an ERC.

The bipartite matching-based method [8] converts
a graph G = (V,E) into a bipartite graph B(G)
= {V, 5, &}, where Vv = {e € E} is the
original edge set; Vo = {vi,0? vl 03, - 0l 02}
are two copies of the original nodes. & =
{(e,v}), (e,v)), (e,v7), (e,v7) : e = (vi,v;) € E}  connects
the edges of G with the two copies of their incident vertices.
Let’s denote G;; the graph formed by adding an edge
(i,7) € E three times into G (to match the three always-
existing node freedom, i.e., rigid rotation and transition in 2D
space). For example, in Fig.1(a), if three copies of edge
es = (2,4) is added into G, it forms a graph Go 4. The
corresponding bipartite graph of G 4 is shown in Fig.1(b),
which is denoted B(Gs4). The edge e;; is independent
with other edges if the bipartite graph B(G; ;) has a perfect
matching from V; to V5 [8, Th. 2.8]]. Fig.1 (a)(b) gives an
example of transforming complete graph K, to a bipartite
graph during testing the edge independence of eg.

The rigidity test starts from an independent set £ which
includes only one edge, and checks independence with other
edges. If an edge e € G is independent with £, £ is expanded
to £ U e, otherwise e is detected to be redundant. When e
is detected redundant, let V; be the vertex set in V4 which
is in the Hungarian tree rooted at e and not matched. Then
any edge in V; can be replaced by e without violating the set
independence of £. Fig.1 (c) shows eg is unmatched, so eg
is redundant. Fig.1 (d) shows the Hungarian tree rooted at eg.
All edges appear in this tree is exchangeable with eg without
violating the set independence of L.

The Hungarian tree provides the influence scope of a redun-
dant edge. It works when there is only one redundant edge,
because the detected redundant edges need to be discarded for

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

keeping the edge set independent [8]. We propose a method
to give the influence scope for all the redundant edges.

B. Algorithm to Detect the BRCs

A BRC detection algorithm in Algorithm 1 is designed to
find BRCs based on the Bipartite Matching method. Two edge
sets are dCSigned: ETedundant and Eindependent» which are
updated by Bipartite Matching. Finally, for each edge e in
Eredundants we can find a BRC, by Hungarian tree, getting a
set of BRCs, denoted as B = { BRC1, BRC», ..., BRC|f|}},
when there are |F| redundant edges.

Algorithm 1 BRCs Detect Algorithm

1: Input: A rigid graph G = (V, E)

2: Output:B = {BRCl, BRCs, ... ,BRCK}
3 B~ (2)7 Eredundant < Q)»Eindependent — (Z);
4: for each edge e € E do

5:  if e are independent with edges in Ejygependent then
6: Eindependent — Eindependent + {6};
7. else

8: Eredqundant < Eredundant + {6};

9:  end if

10: end for

11: for each edge e € E,cqundant do

12:  Find BRC, by Hungarian tree;

132 B~ B+ {BRC.};

14: end for

15: return B

Each BRC contains one redundant edge. We prove the union
of |F| detected BRCs covers the |F| redundant edges of a
ERC.

Lemma 3: Given a rigid graph G, a combination of
BRCs can be found by Algorithm 1, denoted as B =
{BRCl,BRCQ,BRC;),, .. ,BRC|]:|} Then, VE.RC‘z - G,

Proof:  Given a rigid graph G, a spanning Laman
Graph L can be determined and a combination of BRCs
can be found through the above method, denoted as B’ =
{BRC1,BRC),BRCY, ..., BRC,}.

If 3ERC’ ¢ B/, then E(B' — ERC") # 0. Let ¢/ €
E(B' — ERC'), there must be ¢/ € L. Otherwise, there
must be a BRC generated by ¢’. What’s more, VBRC/,
|E(BRC!(\L)| = 2|V(BRC!)|—3. For any spanning Laman
Graph L;, |E(L;(\B)| < |E(LNB)|. So, if removing
edge ¢/, the module L — B’ can’t find more edge to form
a new Laman graph. And VERC}, the edge ¢/ ¢ ERCy,
ie., VERC C G, FRC € B. O

A subset of £ BRCs will contain k£ redundant edges and
each BRC contains one distinct redundant edge. So that,
to find a highly redundant component, we should find a
large set of BRCs (i.e. & BRCs) whose union covers a
small number of vertex (i.e., m vertices), so that %
can be maximized. This leads to the BRC merging prob-
lem, which is to merge BRCs to find more redundant
components.
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C. BRC Merging

Lemma 4: Let G; be a BRC and G' be an arbitrary graph.
Rratio(Gi UG") > Ryatio(Gi) only if G' is redundant rigid.
Proof: Suppose R;qtio(G;) is the RR of G;. Ryqti0(G; U

G = %m which is larger than R,.10(Gi) =

% only if |F(G’)] > 0. So G’ must be redun-
dantly rigid. [
Therefore, we only need to consider merging BRC with
other BRCs without the need to consider merging BRC with
non-redundant subgraphs. After merging cannot be further
proceeded, we will obtain a set of subgraphs which have better
redundant ratio than all its merged subgraphs and they cannot
be further merged with others, which are LMRCs.
Mathematically, let’s denote the set of detected BRCs by
B = {BRCy,BRC5, BRCs,...,BRCk}, ie., there are
K BRCs. Let C € B, be a BRC subset, i.e., C =
{BRC%{,BRCS, BRCS, ..., BRCy} with t < K. If the
BRCs in C can be merged, we will get a merged graph
G® = BRC{ U BRC§ U BRCS U ... U BRCY. To reach
a LMRGC, it is equivalent to find among all subsets C C B,

such that r(G€) = m is maximized.

_ C
C= argrcngal)gw(G ) 3)

D. Conditions for Components Merging

Let Gf and G be two redundant rigid components. These
two components can be merged only if the merged component
has larger redundant ratio than any of them. So the condition
to merge two components is:

RTatio(Gg U G;) > max {RratiO(Gf)7 Rratio(Gj)} “)

Supposing the number of redundant edges in G5, G and G} U
G;? are ej,es and es respectively. The number of redundant
edges after merging equals to the number of redundant edges
before merging, i.e., e3 = ej + eo. By the definition of the
redundant ratio, the Equation (4) is equivalent to:

2es > 2eq
VeuVel(Veu vy =1) = [VE(VEl = 1)
2es 2eq

> (5)
VEOVAMVE OV =)~ VeIave - 1)

By adding both sides of Equation (5), we get:
VL AVE =D+ VEIAVE T =D) > Ve U VEI(VEuVE =1)
(6)

Whether two redundant components can be merged can be
checked by (6) according to the number of vertices before and
after the component merging. For example, if two redundantly
rigid components contain both 10 vertices, (6) is true only if
their merged component has less than 13 vertices, i.e., the two
components have more than 7 overlapped vertices.

E. The Dynamic Merging Graph

Utilizing the merging condition, the component merging
problem is converted to node merging problem on a dynamic
graph. For a graph containing K components, each component
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Fig. 2. An example to illustrate the BRC merging problem.

can be treated as a vertex, with its redundant ratio as the
vertex attribute. Two components are connected by an edge
if the Equation (5) for merging these two components can be
satisfied. In the initial state, there are K vertices and edges
indicating whether two components can be merged.

Two components selected to be merged will be aggregated
into one node and the edges to other components will be
updated. The number of vertices will be reduced by one and
the edges will be updated based on whether the merged node
can be further merged with the other nodes. It should be
noted that even if the original two nodes have no edge to
another node, after they are merged, the merged node may
have an edge to the node. So the merging graph may change
after a merging decision, which makes the merging problem
challenging.

Fig.2 shows an example. The initial graph contains nine
components. (1,4) and (4,5) satisfy condition (5), which are
connected by edges. Fig.2(b) shows two options of merging
two nodes. Fig.2(b.1) and Fig.2(b.2) are the updated graphs if
(1,4) or (4,5) is merged respectively. Note that, in Fig.2(b.1),
node 2 and the merged node of (1,4) satisfy the merge condi-
tion, but node 2 doesn’t satisfy the condition with either 1 or 4.

F. Greedy Merging and Updating Algorithm

An algorithm is designed by greedly one-one merging,
which is listed in Algorithm 2. The input of the algorithm
is the set of BRCs. A component graph G(V ¢, E€) is firstly
initialized by treating each BRCs as a vertex. Component ¢ is
denoted by G¢. An edge (i, j) € E° if condition (5) is satisfied
for BRC i and j. The neighbors of each BRC 4, i.e., N (i) are
BRCs sharing at least one node with BRC .

The algorithm outputs a set of LMRCs. In each step, the two
components whose union has the highest RR will be selected
to be merged. After the merge operation, the edges from
the merged component’s to the neighboring components are
checked and updated. The merging process repeats until no
two components can be further merged.

Because checking the merging condition is based only on
the number of vertices in a component, the component graph
initialization has complexity O(K?), where K is the number
of BRCs. Finding the merging option with the largest RR
has complexity O(K?), so the overall complexity of the
Algorithm 2 is O(K?3).

We analyze the approximation ratio of RR found by algo-
rithm 2 to the optimal RR of the most dense subgraph in the
ERC. Let n,,;, denote the minimum nodes number in any
BRC, i.e., the minimum BRC size. It is generally 4 or 5.
Let My, denote the maximum number of redundant edges
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Algorithm 2 Greedily Merge and Update Algorithm
: Input: B = {BRCl, BRCs, ... ,BRCK}
: Output:G° = {G§,GS,...,GS}
: Initialize dynamic graph G(V¢, E€) by BRCs set B;
: Initialize G¢ = V¢
: while £¢ # () do
1,7} = max r(GSUGS);
{i.7} = max r(G7UGH)
o T=r(G7UGY)
8 if T>r(GY) and T > r(G) then

- RO TR R

9: G — GFUGS;

10: G — G° —{G5};

11: Update neighboring edges of G¢ in G(V¢, E°);
12 end if

13: end while
14: return G°

in the considered ERC. Then, given an arbitrary ERC, there
must be a subgraph which has the largest Redundant Ratio,
whose RR is denoted as OPT. Algorithm 2 will greedily
merge components until a LMRC cannot be further merged
with others. The RR of the LMRC is bounded in theorem 3.
Theorem 3: The redundant ratio {)rovided by algorithm 2 is

, } times of the OPT.

nmi_n(nmin — 1) Mpaz

Proof: Algorithm 2 merges the components for larger
Redundant Ratio. In the worst case, any two BRCs cannot
be merged, the result RR of the LMRC is ——M .
nmin(nmin - 1)

Since OPT must be less than 1, so the approximation factor is

at least max{

at least . On the other hand, the most number
nmin(nmin -

of redundant edges that the OPT has is Mm,q,. In the worst
case, the LMRC has one redundant eiige, so the approximation

factor is max . O
{nmin(nmin - 1) ’ Mmax }

VI. WEIGHTED COMPONENT STITCHING

After finding LMRCs, local coordinates of nodes are calcu-
lated in LMRCs by SMACOF algorithm and the local coordi-
nates are synchronized to calculate the global coordinates of
nodes. In practice, many parts in the graph are not redundantly
rigid. For component stitching, we make an integration of
ARAP [15] and the WCS objective in (2). The nodes in sparse
parts form patches as in ARAP [15] and are synchronized with
the LMRCs by (7).

O i —pj) — Rildgl — )l

F = min
P,Ry,...,RS,... =&
L
N 1
+3°0 3 fr)lle - pi) - Bi(g) = 501
I=1 (i.§)€G}

‘RI'R; =1,R{"Rf = I} @)

In (7), P = {p1,p2,p3 . .., pn} represents the desired global
coordinates of nodes. ¢¢ and q} are local coordinates in the
patch G, i.e., the subgraph induced by the one-hop neighbor
of i. The local coordinates in such kinds of patches are
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equally weighted. The second part is weighted component
synchronization. If L. LMRCs are detected, the weights for
local coordinates in each LMRC are assigned according to
RRs of the LMRCs. By setting f(r;) > 1, we guarantee the
redundant components have larger impacts than the ordinary
patches in synchronization.

A. The Synchronization Algorithm

The weighted component synchronization in (7) can be
solved using an Alternating Least-Squares (ALS) method. It
is composed by the iteration of two phases: 1) a local phase
to solve R and R.; and 2) a global phase to solve P.

In the local phase, we assume P is fixed to solve R; and

« in (7). The initial value of P can be obtained by solving
the linear equations as in ARAP [15]. Given P, we need
to solve rotation matrix R; and Rj through the following
optimization problems, which is a typical point cloud matching
problem.

R;
RS =

argm}%n{HPi ~R,Q;|%: RTR=1}

argmin{|| P — REQf |« REP R =1} (8)
The rotation matrices in (8) is efficiently calculated using Iter-
ative Closest Point (ICP) algorithm [47]. The ICP algorithm
uses Sigular Value Decomposition to calculate the rotation
matrix for aligning two point clouds. Its complexity is O(n2)
for a component having n. nodes, which is highly efficient in
this problem.

In the global phase, we assume all R; and Rj, are fixed to
solve P by Eqn (7). This is obtained by setting the gradient
gzi = 0,Vi = 1,2,--- ,n, which helps to set up n linear
equations of p; and p;, where p; € N;.

1
> (bi=py) = 2+ 2 apG.ecs (1)

JEN;
O [Rilgi — ) + Rl — ¢))
JEN;

D>

G¢:(i,5)€GE

Fr) Ry (e = 7)) )

Note that q;- is the jth node’s position in the local coordinate
system of Gi. ZG,“:(z',j)EGf f(r) is the summation in all
components that contains edge (i, 7). By solving these n linear
equations, the global coordinates are obtained, which are then
substituted into (7) for solving I2; and I?f. The iteration repeats
until convergence of P or reaching a maximum number of
iteration times.

B. Complexity Analysis of WCS

Theorem 4: Given a sparse graph with n vertices and m
edges, with the node degree bounded by A, the presented
weighted component stitching algorithm for localizing nodes
in the network has complexity of O((An)3 + h-n?), where h
is the maximum iteration time in the synchronization step.

Proof:  Given a sparse graph G = (V, E),|[V| = n and
|[E| = m, where m < An. Firstly, we find a combina-
tion of BRCs, denotes as BRC1, BRC5, BRCs, ..., BRCk.
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TABLE I
THE TIME COMPLEXITY FOR DIFFERENT ALGORITHMS

WCS
O((An)3 + hn?3)

ARAP
O(h - n3)

SDP
O(m3A5)

SMACOF
O(h - n?)

Algorithms
Complexity

We finish this step by Bipartite Matching Algorithm, whose
time complexity is O((n + m)?)=O(((A + 1)n)?). Then,
we merge these K BRCs into L LMRCs by Algorithm 2,
L < K < n. And the time complexity of this step is O(K?).
Finally, we correct the global coordinates of all nodes by
LMRCs and every node’s local coordinate. To solve Eqn (9),
we need to obtain all modules, including (¢} —g;) and (¢f —g5).
We need a traversal of all edges in all local coordinates. The
time complexity of this process is O((n + L)m), which is
equivalent to O(An?). The time complexity of the method
we use to solve the linear system of equations is O(n?).
Because the maximum iteration times is h (which is set
100 in simulations), the time complexity of this step is
O(hn?). Therefore, the mostly time consuming step is the
BRC generation and weighted component stitching, so that
the total time complexity is O((An)? + hn?). O

We compared the time complexity of WCS, ARAP, SDP
and SMACOF. The result is shown in table 1.

C. Selection of the Weighting Function f(r;)

It is obvious that the weighting function w; = f(r;) will
impact the synchronization result. There are different ways
to design the weighting function. We investigated four types
of weighting functions, namely, linear function, logarithmic
function, cubic function and exponential function. These four
forms of weighting functions are designed as below:

Jtinear(r) = 1+ ax*r
fiogarithmic(r) = 1+ 1In(1 +a*r)
feubic(r) = (1 + a*7)3
feaponentiat(r) =1 — e+ e T (10)

The parameters « in the Equation (10) is a scaling factor,
which can be changed to control the scale of the weights.
We compare how the different weighting schemes will impact
the localization accuracy. To construct representative weight-
ing functions, we adjust the parameters «, so that the designed
four types of weighting functions are given as shown in the
Fig. 5. The impacts of the weighting functions are investigated
by simulations. It shows that WCS by all these weighting
schemes outperform traditional CS method. Among them the
linear weighting scheme performs the best.

VII. PERFORMANCE ANALYSIS AND SIMULATION
A. Validity of the RR Metric

We firstly verify the validity of the proposed RR metric
on the prediction quality of local coordinates. Three other
potential metrics are compared with the RR metric.

1) Average node degree in the component, i.e., 7(GS) =

Zveqe dVi)
V@il >
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Fig. 3.  The Localization Error and Metrics’ Performance in Different

Topologies.
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Fig. 4. The correlation coefficient between localization errors and these four
metrics.

2) Edge density in the component, ie., 7(G§) =

2|E(GY]
[V(GHI(V(G)I-1)
)Number of  redundant edges over number of,
: ¢y _ IB(GHI-2(IV(GI)I=3)
ie., r(GYS) = VaCehl .

Different network topologies are generated to evaluate both
the location error and the values of different metrics. The net-
work parameters are controlled so that the location errors keep
reducing. The experiments are carried out by Matlab2017b.
One hundreds nodes are deployed randomly in a 100*100 area.
The maximum ranging radius is controlled to generate graphs
of different sparsity. In each parameter setting, 100 graphs are
randomly generated to evaluate the mean location error and the
mean values of the metrics. The results are shown in Fig. 3.

The z-axis in Fig. 3 indicates different network topolo-
gies. The average localization errors under these settings are
shown by the red line which are monotonously decreasing in
these settings. Among the four metrics, only RR provides a
monotone increasing curve. The correlation coefficients of the
localization errors with the four metrics are also calculated.
The result is shown in Fig. 4. It shows that RR and the localiza-
tion error have the strongest negative correlation, i.e., —0.97,
which provides a better indication from edge redundancy to
the local realization quality than the other metrics.

B. Impacts of the Weighting Function

Experiments were carried out to compare the impacts
of weighting functions to the localization results. We also
investigates how weighting in patches using different metrics
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will impact the localization results. Therefore, we compare
the localization results of the following six weighting schemes
with that of ARAP.

1) linear component weighting fiinear(7);

2) logarithmic component weighting fiogarithmic(7);

3) cubic component weighting feupic(r);

4) exponential component weighting fezponential (7');

5) patch weighting by average patch node degree f(G;) =
2v,eq, AVi)
—Ivear ,
6) pat‘ch w‘elghtmg by patch edge density f(G;) =
E(G;)
C(IV(Gi)l.2)

that the cost function in 5) 6) for patch weighting is
n

P,RIB.I.D.,R,L{;EZM (G)ll(pi — pj) — Rilg} — a))|I*

RIR, =1}

We’ve documented the localization error of each node as
lpi — P}, where p is the estimated localization of v;; p; is
the ground-truth location. Then we present the experimental
results in the form of cumulative distribution, as shown in
the Fig. 6. In simulation, 100 nodes are randomly deployed
into an area of 100(m) x 100(m). We control the maximum
ranging distance and each experiment are run in 100 random
topologies for calculating the cumulative distribution.

In the result of Fig.6, we compare the cumulative probability
density function (CDF) of location errors of ARAP (which
is the state-of-the-art component-stitching algorithm) with the

Note
F =
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Fig. 8. Selected algorithms’ performances with different edge density.
CDFs of six kinds of weighting schemes. The results in Fig.5
show that patch-based weighting by either 5) or 6) improves
the localization accuracy only a little comparing with the
result of ARAP. But all the four component-based weighting
schemes perform much better than the patch-based weight-
ing and ARAP. Among the four component-based weighting
schemes, linear weighting performs the best. This is due to
the linear correlation feature of RR and the location error as
shown in Fig.3.

The average localization errors of these seven methods are
further plotted in Fig.7. It shows that the linear component
weighting scheme reduces the average localization error 38%
than that of ARAP, while the patch-based methods reduce
about 2.6%, showing the effectiveness of WCS.

C. Performance Comparison in Various Networks

1) Simulation Settings: WCS is compared with the state-
of-the-art of component stitching method ARAP [15], and
two centralized network locating method SDP [11] and
SMACOF [10]. The centralized algorithms treat the whole
graph as one component to conduct location optimization.

The considered network settings include: 1) edge density;
2) ranging noises. In simulation, we generate networks by
random geometric graphs. 50 to 100 nodes were randomly
deployed into an area of 100(m) x 100(m). The edge den-
sity of the graph is controlled by the ranging radius R.
d; ; between nodes v; and v; can be measured if ||p; —
pj|l < R. The distance measurements are impacted by noises
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Comparing the localization performances of different algorithms in different network size, ranging radius, and noise level settings. The proposed

LMRC-based weighted component stitching method provides the most accurate and reliable results in these comparisons.
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d@j = djﬂ' = ||pz —pj|| + €4, €5 ~ N(O,O’Q), where the noise
level is controlled by varying o.

Firstly, we compare WCS with other algorithms for
graphs with different edge densities. The result is shown
in Fig.8. By varying R in {45,40,35,30,25}, we control
the edge density, i.e., the average node degree to change
from 20 to 8 as shown by the red curve. When edges are
dense, all the algorithms perform well in such dense graph,
providing small localization error. However, when the edges
become sparse, the performances of SDP and SMACOF
drop sharply, showing less tolerance to the edge sparseness.
WCS provides the best localization accuracy and robustness
in sparse networks, which is better than ARAP. In later
sections, we will analyze algorithm performances in sparse
network settings when the centralized algorithms perform
not well.

2) Performance in Sparse Networks: The average normal-
ized error of localization is evaluated as the accuracy metric.

2 iz llpi = il
n

Err = (1)

0.8

0.6

CDF

0.4

—A— ARAP
—4— Weighted ARAP
—=— SDP

SMACOF

I | ——WCS
0 5 10 15 20 25 30
Localization Error(m)

0.2

Fig. 1. R=250=>5.

where p) is the estimated localization of v;; p; is the ground-
truth location; n is the number of nodes.

3) Visualize the Performance Difference: Fig.9 visualizes
the localization results of different algorithms for different
network size, sensing radius, and noise level settings. For page
limitation, we only show the comparison with ARAP. SDP and
SMACOF perform worse than ARAP as given in Fig.8. The
parameter settings are given in the top row. In the result, there
are three rows of figures: (1) ground truth; (2) results of WCS;
(3) result of ARAP.

e When R = 30,0 = 1, which is the case with highest
edge density and lowest noise level, WCS, ARAP and
SMACOF provides localization results very close to the
ground truth.

e When the ranging noises increase to R = 30,0 = 5, we
can see the results of ARAP become worse, but WCS
provides rather reliable localization result. When noises
increase to R = 30,0 = 10, the results of ARAP is
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TABLE I

THE AVERAGE LOCALIZATION ERROR IN
DIFFERENT PARAMETER SETTING

Parameter Set- % WCS WARAPARAP SDP  SMACOF
ting

R=30,0=5 45.8% 3.21 5.86 5.93 28.29 18.88
R=30,0 =10 622% 636 16.67 16.78 30.01 2691
R=250=5 55.6% 6.77 15.18 1525 31.59 28.61
R=25,0 =10 64.6% 8.87 25.18 24.92 33.16 31.78

unsatifactory, but the result topology of WCS is still
meaningful.

o« When the network becomes sparse, i.e., when R =
25,0 = 5, WCS shows better results than ARAP. The
advantage is more clearly seen when R = 25,0 = 10.
Although the location errors of WCS also increase, it
provides much better results than ARAP.

4) Statistical Results: We conduct further experiments to
compare the localization performances of different algorithms
statistically under various parameter settings. In each setting,
we carried out 100 experiments by generating network topolo-
gies randomly under the parameter setting, and calculated the
cumulative distribution function of the localization errors.

The results are shown in Fig.10 to Fig.13. It can be seen
that WCS provided the best performances in all these sparse
network settings among all the algorithms. Weighted ARAP is
to add weighted synchronization scheme to the synchroniza-
tion of patches, using the patch’s RR metrics as weights. The
average location errors are summarized in Table.II.

Overall, WCS method reduces the location error more than
40% than the state-of-the-art ARAP algorithm in sparse and
noisy network settings. It performs much better than that
of the centralized algorithms. It also performs as well as
other algorithms in dense networks. The results verify the
importance to divide components by finding the LMRCs and
to utilize RR metric for synchronization with weights.
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VIII. CONCLUSION

This paper proposes to find redundant components in sensor
networks to enhance the robustness of component stitching
based network localization. It shows a 2-D graph has limited
number of determinant ERCs and each ERC can be covered
by a set of BRCs. It proposes a bipartite matching based
algorithm to find a set of BRCs. Each BRC contains exactly
one redundant edge and indicates the influence scope of
the redundant edge. By a proposed redundancy ratio metric,
a greedily merging method is developed to merge the BRCs
into the locally most reliable components (LMRCs). Then the
local coordinates of nodes are calculated in each LMRC and
a weighted synchronization scheme is developed. It shows
more than 45% location accuracy improvement than the state-
of-the-art component stitching methods in sparse and noisy
network settings. We show the WCS algorithm has complexity
O((An)? + hn?). So it is suitable for reliable localization in
sparse networks. The complexity improves when the average
node degree is high. Further studies to exclude the non-rigid
components and to utilize the of out-of-range information are
potential directions.
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